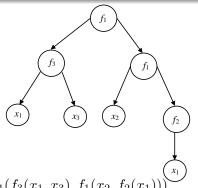
Генетическое программирование с параллельными оптимизированными операторами в задаче регрессии булевских данных

Захаров Алексей Олегович Захарова Юлия Викторовна

Институт математики им. С.Л. Соболева СО РАН (Омский филиал)

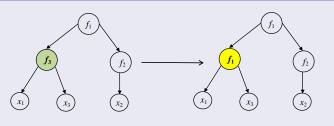

ПаВТ-2024

Исследование выполнено за счет гранта Российского научного фонда № 22-71-10015.

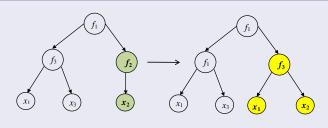
Задача оптимизации

Входные данные $\{(\bar{x}^i,y^i)\}$, $\bar{x}^i=(\bar{x}^i_1,\dots,\bar{x}^i_m),\,i=1,\dots,n$ (обучающая выборка).

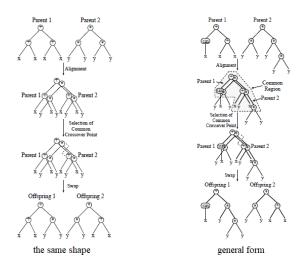
Целевая функция $g(T) = \sum_{i=1}^{n} (y_i - T(\bar{x}_m^i))^2$, $T(\bar{x}^i)$ – значение функционального дерева T на \bar{x}^i .


 $T(x_1, x_2, x_3) = f_1(f_3(x_1, x_3), f_1(x_2, f_2(x_1)))$

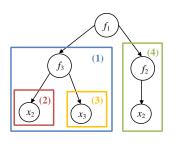
Эволюционный алгоритм

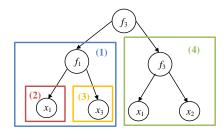

- 1: Построить начальную популяцию.
- 2: Повторить шаги 3–7 пока не будет выполнен критерий останова.
- 3: Выбрать две особи T_1, T_2 из текущей популяции.
- 4: Применить оператор мутации к обеим особям T_1 , T_2 с некоторой вероятностью и получить особи T_1' , T_2' , соответственно.
- 5: Построить потомка T', применив оператор кроссинговера к особям T'_1, T'_2 .
- 6: Выбрать лучшую особь T_b среди особей T', T_1 и T_2 .
- 7: Заменить худшую особь в популяции особью T_b .
- 8: Вернуть лучшую особь по отношению к значению целевой функции на протяжении работы алгоритма.

Операторы мутации на деревьях


Point mutation (GP-PM)

Subtree mutation (GP-SM)




One-point crossover (GP-OPX)

Poli R., Langdon W.B. On the search properties of different crossover operators in genetic programming (1998)

Оптимальная рекомбинация на деревьях

Оптимизированные операторы рекомбинации

Optimized one-point (O-OPX): выбор наилучшего среди 4 возможных потомков (1), (2), (3), (4).

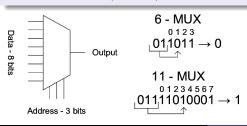
Optimized uniform (O-UX): выбор наилучшего среди 2^3 возможных потомков (все возможные комбинации (2), (3), (4)).

Эксперимент на булевых деревьях

Дерево T = (V, E)

Листья содержат элементы из множества

$$X = \{x_1, x_2, \dots, x_m\}, x_i \in \{0, 1\}, i = 1, 2, \dots, m.$$


Базовые функции $\mathcal{F}_1 = \{\land, \lor, \neg\land, \neg\lor\},\$

$$\mathcal{F}_2 = \{\land, \lor, \neg \land, \neg \lor, \sim, XOR\},\$$

Тестовые примеры

Входные данные - вся таблица истинности

- 1. 6-multiplexor (6-mux). \mathcal{F}_1 .
- 2. even-*n*-parity (even-*n*). \mathcal{F}_2 .

Результаты экспериментов

LS + PM, O-OPX

Задача	Потоки (кроссинговер)	Время запуска
6-mux	1	12.63 мин (2.53)
6-mux	10	11.48 мин (2.3)
6-mux	50	5 мин
even-3	1	83 мсек
even-3	5	75 мсек
even-3	10	92 мсек
even-4	1	0.37 сек (1.12)
even-4	5	0.33 сек (1)
even-4	10	0.33 сек
even-5	1	2.4 сек (3.16)
even-5	5	0.88 сек (1.16)
even-5	10	0.76 сек