
On Different Methods for
Automated MILP Solver

Configuration
Ustyugov V.N., Sobolev Institute of Mathematics, Siberian branch of

Russian Academy of Sciences, Omsk

The research was supported by Russian Science Foundation grant N
22-71-10015, https://rscf.ru/en/project/22-71-10015/

https://rscf.ru/en/project/22-71-10015/

Base task

Base task

Base task

1. 𝑞𝑗𝑐 = 1 when and only when job 𝑗 is included in configuration 𝑐, 0 else.
2. 𝑎𝑐1𝑐2 = 1 when and only when configuration 𝑐2 must be performed after

configuration 𝑐1, 0 else.
3. 𝑇max — upper bound of configuration runtime in event point.

Let 𝐾 = {0, 1, 2, . . . , 𝑒} be a set of event points, where 𝑒 is a maximum event
point, so we add the following variables:

1. 𝑡𝑘𝑐 — runtime of configuration 𝑐 event point 𝑘.
2. 𝑥𝑘𝑐 = 1 when and only when, configuration 𝑐 is performed in event point 𝑘, 0

else. Let us assume that, zero configuration is performed in zero event point:
𝑥00 = 1 и 𝑥0𝑐 = 0, 𝑐 ∈ 𝐶.

3. 𝑦𝑗𝑘 = 1 when and only when job 𝑗 starts in event point 𝑘, 0 else.

Optimization process

Base MCPS tasks

Solver
GUROBI / CPLEX / etc

Parameter optimization (VNS)

Optimization process

Base MCPS tasks

Solver
GUROBI / CPLEX / etc

Parameter optimization (VNS)

Optimize further

Optimization process

Task
instance

Black box
that can
extract

numeric
features

Numeric
representation of

task instance

Further step, e.g.
machine learning

application

LLM (Large Language Models)

BERT(Bidirectional Encoder Representations from Transformers)

BERT(Bidirectional Encoder Representations from Transformers)

*.gms Tokenizer BERT
Embedding V

|V| = 768

Text

Position-
encoded
token
identifiers

Where do I pass embeddings?

P = (p1,...,pk) - solver’s parameter vector (configuration)

Regression task:

Pi*=ViW, i = 1,...,J, where J is a number of different individual tasks

Vi = BERT(Tokenizer(Ii))

Experimental data

Dimensionality Optimization type

No VNS LLM

4 jobs 0.0701 s 0.0698 s 0.0695 s

7 jobs 117,7 s – 117,04 s

Table 2. Average runtime

Conclusions

● Since the process of obtaining embeddings and training linear regression was
performed only for tasks with 4 jobs the unquestionable improvement was
obtained only on this dimensionality;

● Bad generalization is seen on higher dimensionalities, probably because it’s
interpolation so it might be inaccurate;

● Assumption: for the purpose of increasing prediction quality it’s best to “show”
some amount of high-dimensional tasks, so the linear model can “extrapolate”
the knowledge on in-between dimensionalities;

● Going for more parameters will make us face imminent curse of
dimensionality, which is open problem in this case, since there are not so
many task instances available;

● There is another way of obtaining vector representation, introduced in the
paper about MIPLIB [3], those representations formed by looking inside of
tasks during runtime and may be useful in our case.

Thanks for your attention!

References:

1. А.В.Еремеев, М.Ю.Сахно, Построение расписания для многоядерного
процессора с учетом взаимного влияния работ

2. Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding

3. Gleixner, A., Hendel, G., Gamrath, G. et al. MIPLIB 2017: data-driven
compilation of the 6th mixed-integer programming library.

vyacheslav.nikolayevich.ustyugov@gmail.com

