
Investigation of operators and parameters in
evolutionary algorithms for one scheduling

problem with resource constraints

Maria Sakhno

Omsk Department of Sobolev Institute of Mathematics SB RAS
The research is supported by RSF grant 22-71-10015.



Speed Scaling Scheduling

Processors and Jobs
2 speed-scalable processors

J = {1, . . . , n} is the set of jobs:
Vj is the processing volume (work) of job j
sizej is the number of processors required by job j

Wj :=
Vj

sizej
is the work on one processor

E is the energy budget

Parameters
Preemption and migration are characterized for the systems with
single image of the memory.
Non-preemptive instances arise in systems with distributed memory.



Homogeneous Model in Speed-scaling
If a processor runs at speed s then the energy consumption is sα units
of energy per time unit, where α > 1 is a constant (practical studies
show that α ≤ 3).

It is supposed that a continuous spectrum of processor speeds is
available.



The aim is to find a feasible schedule with the minimum total
completion time so that the energy consumption is not greater than a
given energy budget.

Solution

Lower Bound



Previous Research
Scheduling
▶ Lee & Cai: Scheduling one and two-processor tasks on two parallel

processors (1999)
▶ Kononov & Zakharova: Speed scaling scheduling of multiprocessor

jobs with energy constraint and total completion time criterion
(2023)

▶ Zakharova & Sakhno: Heuristics with local improvements for two-
processor scheduling problem with energy constraint and paral-
lelization (2024)

Evolutionary Computation
▶ Eremeev & Kovalenko: A memetic algorithm with optimal recom-

bination for the asymmetric travelling salesman problem (2020)
▶ Neri & Cotta: Memetic Algorithms and Memetic Computing Op-

timization: A Literature Review (2012)
▶ Blum & Eremeev & Zakharova: Hybridizations of evolutionary

algorithms with Large Neighborhood Search (2022)
▶ Doerr & Ghannane, & Ibn Brahim: Runtime Analysis for

Permutation-based Evolutionary Algorithms (2024)



Genetic Algorithm (GA) with Generational Scheme

1: Construct the initial population P 0 = {π0
j } of k permutations. Save

ne individuals with the best objective values as elites of P 0. Put
t = 0.

2: Until termination condition is met, perform
2.1 for i← 1 to (k − ne)/2

2.1.1 Select two parent permutations π1 and π2 using operator Sel(P t).
2.1.2 Construct (π1′, π2′) = Cross(π1, π2).
2.1.3 Apply the mutation operator to constructed permutations: Mut(π1′)

and Mut(π2′) and save the result as individuals πt+1
2i−1, π

t+1
2i for

population P t+1.
2.2 Copy elites of P t to P t+1 and identify elites of P t+1.
2.3 Put t = t+ 1.

3: Return the best found individual.



Solution encoding

The solutions are encoded by permutations of jobs.



Crossover Operators

Figure: One Point Crossover (1PX)
Figure: Cycle Crossover (CX)

Figure: Order Crossover (OX)
Figure: Partially Mapped Crossover
(PMX)



Optimized Crossovers
One Point Crossover (1PX)



Mutation Operators

Exchange (swap) mutation

Shift (insert) mutation

Scramble Mutation Scheme1

1. Randomly choose np from Poisson distribution with λp.
2. Apply operator Mut for the given genotype np times.

1Doerr & Ghannane, & Ibn Brahim: Runtime Analysis for Permutation-based
Evolutionary Algorithms (2024)



Adaptive Technique2

1: Choose a crossover. The probability of choosing each operator is
proportional to its weight.

2: Apply chosen crossover to the parent genotypes.
3: Update the weight of the chosen crossover:

ϕa =


w1, if the new solution is a new global best,
w2, if the new solution is better than the current one,
w3, if the new solution is better than one of the parents or both.

ρa = λρa + (1− λ)ϕa.

2Mara & Norcahyo & Jodiawan & Lusiantoro & Rifai: A survey of adaptive large
neighborhood search algorithms and applications (2022)



Parameter auto-tuning: IRACE package3

Parameter name Parameter description
k population size
ne number of elites

PIPRand probability of generating a genotype randomlly
Selection selection operator

PCross probability of applying the crossover operator
Crossover crossover operator

PMut probability of applying the mutation operator
Mutation mutation operator
w2, w3, λ parameters of adaptive technique

λp lambda for Poisson distribution

3Lopez-Ibanez, M., Dubois-Lacoste, J., Perez Caceres, L, Birattari, M., Stutzle,
T.: The irace package: Iterated racing for automatic algorithm configuration, Op-
erations Research Perspectives, 3, 43-58 (2016)



Versions of genetic algorithm

GArand is a GA.
GAadapt_rand is the GA with the adaptive technique for random-

ized crossover operators (1PX, CX, OX, PMX).



Dynamics of crossover weights during GAadapt_rand

iterations

The classic restarting rule is used.



Versions of genetic algorithm

GArand is a classic GA.
GAadapt_rand is the GA with the adaptive technique for random-

ized crossover operators (1PX, CX, OX, PMX).
GAadapt_opt is the GA with the adaptive technique for optimized

crossover operators (1PX, PO_1PX, O_1PX).
GRLI is the known greedy heuristic with local improvements4.

4Zakharova & Sakhno: Heuristics with local improvements for two-processor
scheduling problem with energy constraint and parallelization (2024)



Dynamics of crossover weights during GAadapt_opt

iterations

The classic restarting rule is used.



Experiment result

GArand GAadapt_rand GAadapt_opt GRLI

avg 1.99% 2.05% 1.94% 4.56%
min 0.82% 0.83% 0.81% 1.67%
max 3.86% 3.76% 3.63% 7.74%

Table: Relative deviations of results from the lower bound for algorithms
with parameters found by IRACE package

GArand_poisson GAadapt_rand_poisson GAadapt_opt_poisson

avg 1.96% 1.96% 1.95%
min 0.83% 0.86% 0.8%
max 3.72% 3.57% 3.63%

Table: Relative deviations of results from the lower bound for algorithms with
scramble mutation operator and with parameters found by IRACE package



Conclusions and Further Research

Recommendations
▶ Apply auto-tuning for parameters of algorithm.
▶ Apply adaptive technique to identify the leading crossover opera-

tor.
▶ Implement optimized version of the leading crossover operator and

try to apply scramble mutation.

Further Plans
▶ Generalize the algorithm on permutation problems.
▶ Compare with other known algorithms

(P.A. Borisovsky, “A parallel “Go with the winners” algorithm for
some scheduling problems”, 2023;
P. Borisovsky, Y. Kovalenko, "A Memetic Algorithm with Parallel
Local Search for Flowshop Scheduling Problems", 2020).



Thank you for your attention!



Convex program

∑
j∈J

Cj(π) =

n∑
j=1

(n− j + 1)pπj → min, (1)

∑
j∈J

(2pj)
1−α

(Vj)
α = E. (2)



Experiment result
GArand GAadapt_rand GAadapt_opt GRLI

avg 2.03% 2.06% 1.95% 4.56%
min 0.83% 0.83% 0.78% 1.67%
max 3.83% 3.88% 3.57% 7.74%

Table: Relative deviations of results from the lower bound for algorithms

GArand GAadapt_rand GAadapt_opt GRLI

avg 1.99% 2.05% 1.94% 4.56%
min 0.82% 0.83% 0.81% 1.67%
max 3.86% 3.76% 3.63% 7.74%

Table: Relative deviations of results from the lower bound for algorithms
with parameters found by IRACE package

GArand_poisson GAadapt_rand_poisson GAadapt_opt_poisson

avg 1.96% 1.96% 1.95%
min 0.83% 0.86% 0.8%
max 3.72% 3.57% 3.63%

Table: Relative deviations of results from the lower bound for algorithms with
scramble mutation operator and with parameters found by IRACE package


