Адаптивный вызов процедур и настройка параметров в эволюционных алгоритмах для задач составления расписаний

М.Ю. Сахно, Ю.В. Захарова

Омский филиал института математики им. С.Л. Соболева СО РАН Исследование выполнено за счет гранта Российского научного фонда № 22-71-10015, https://rscf.ru/project/22-71-10015.

Genetic Algorithm with Generational Scheme

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Crossover and Mutation Operators One Point Crossover (1PX)

Exchange (swap) mutation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Speed Scaling Scheduling

Processors and Jobs

 $2\ {\rm speed}\mbox{-scalable processors}$

 $\mathcal{J} = \{1, \dots, n\} \text{ is the set of jobs:}$ $V_j \text{ is the processing volume (work) of job } j$ $size_j \text{ is the number of processors required by job } j$ $W_j := \frac{V_j}{size_j} \text{ is the work on one processor}$ E is the energy budget

Parameters

Preemption and migration are characterized for the systems with single image of the memory.

Non-preemptive instances arise in systems with distributed memory.

Homogeneous Model in Speed-scaling

If a processor runs at speed s then the energy consumption is s^{α} units of energy per time unit, where $\alpha > 1$ is a constant (practical studies show that $\alpha \leq 3$).

It is supposed that a continuous spectrum of processor speeds is available.

The aim is to find a feasible schedule with the minimum total completion time so that the energy consumption is not greater than a given energy budget.

Solution

	Processor 1	10	30	40		60	70
Processor 2 20 40 40 60 70	Processor 2	20		40	40	60	70

Lower Bound

Processor 1	5	10	15	20	40	60	70
-------------	---	----	----	----	----	----	----

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Results

30 instances, n = 50

Parameter values of genetic algorithm

Parameter name	Parameter value
k	200
P_{Cross}	0.8
P_{Mut}	0.2

Relative deviation of objective function found by the GA from the lower bound

avg: 2.03% min: 0.83% max: 3.83%

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Results for Problem using IRACE package

30 instances, n = 50

Parameter values of genetic algorithm found by IRACE

Parameter name	Parameter value
k	244
P_{Cross}	0.7
P_{Mut}	0.63

Relative deviation of objective function found by the GA from the lower bound

avg: 1.99% min: 0.82% max: 3.86%

うして ふゆ く は く は く む く し く

Adaptive Technique

- 1: Choose a crossover. The probability of choosing each operator is proportional to its weight.
- 2: Apply chosen crossover to the parent genotypes.
- 3: Update the weight of the chosen crossover:

 $\phi_a = \begin{cases} w_1, \text{if the new solution is a new global best,} \\ w_2, \text{if the new solution is better than the current one,} \\ w_3, \text{if the new solution is better than one of the parents or both.} \end{cases}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$\rho_a = \lambda \rho_a + (1 - \lambda)\phi_a.$$

Results of Genetic Algorithm with Adaptation

30 instances, n = 50

Crossover operator: 1PX

	GA_{adapt}	$GA_{adapt-irace}$
avg	2.06%	2.05%
\min	0.83%	0.83%
\max	3.88%	3.76%

Table: Relative deviation of objective function found by the GA with Adaptation from the lower bound

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusions and Further Research

We recommend

► Apply IRACE for parameters.

Further Plans

- ▶ Add Poisson Mutation
- Add Optimized Operators

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ