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Clustering problems

In the clustering problem we must split a set of objects into several subsets based 
on the similarity of the objects to each other. A set of objects can be represented 
as vertices of a graph, and the similarity of objects can be specified as edges of 
this graph.

A graph is clustered if each of its components is a clique (cluster). Additionally, 
restrictions on the number of components, the size of components can be 
introduced. Clustering problems are related to unsupervised learning. However, 
semi-supervised methods and algorithms are also applicable. In this approach, we 
have a supervisor who can partition some objects across clusters.



Basic definitions

A cluster graph is a graph, each component of which is a complete graph.

The distance ρ(G1, G2) between two labeled graphs G1 = (V, E1) and G2 = (V, E2) 
is the cardinality of the symmetric difference E1ΔE2 (the elements of this set are 
called disagreements).

For the vertex v of the graph G = (V, E) we call a neighborhood NG(v) the set of 
u ∈ V joined with v.



Cluster graph example

We have to remove one edge and add one edge.



Semi supervised graph clustering

k-SEMI-SUPERVISED GRAPH CLUSTERING. The input is a graph G = (V, E), 
an integer 2 ≤ k ≤ |V|, a set Z = {z1, …, zk} ⸦ V. The aim is to find cluster graph C 
with k clusters minimizing the number of disagreements. Additionally, vertices of Z 
must belong to different clusters of C.

The problem is NP-hard.



3-approximation algorithm for 2-ss-clustering

The Neighborhood Semi-Supervised Algorithm (NS). 

Construct the set F of feasible solutions according to the rules. 

a) For each vertex v ∈ V \ {z1, z2} build two cluster graphs Сv
1 and Cv

2 by the 
following. The 1st cluster of the 1st graph is {v} ∪ (NG(v) \ {z1}) ∪ {z2}, the 1st 
cluster of the 2nd graph is {v} ∪ (NG(v) \ {z2}) ∪ {z1}. Both 2nd clusters 
contain not yet clustered vertices. 

b) For each vertex v ∈ {z1, z2} build cluster graphs Сv by the following. The 1st 
cluster is ({v} ∪ NG(v)) \ {x}. 2nd cluster contains not yet clustered vertices (x 
= z1 if v = z2, x = z2 if v = z1). 

Return CNS ∈ F with minimum ρ(G, CNS).



Local search for 2-ss-clustering

LocalSearch. 

Let C be a cluster graph for a graph G = (V, E). For each v ∈ V \ {z1, z2} let Cv be 
the same cluster graph as C, except with v in the opposite cluster. We then define 
λv = ρ(G, C) - ρ(G, Cv), the improvement caused by the change. Let u be the 
vertex with maximum λv. If λv ≤ 0, stop, otherwise let C ← Cw and repeat.



Local search for 2-ss-clustering

When we move a blue vertex to a red cluster, we don't count the green edge, but we 
count the red ones. Therefore, the value of the objective function will increase by 2.



Approximation algorithms for 2-ss-clustering

The 2-approximation Neighborhood Semi-Supervised with LocalSearch 
Algorithm (NSLS) from is the application of local search to each cluster graph C 
∈ F. Let CNSLS be a solution built by this algorithm. 

We also want to research Pre-Clustered Neighborhood Semi-Supervised with 
LocalSearch Algorithm (PNSLS) which applies local search only for Cz1 and Cz2 
from F. Let CPNSLS be a solution built by this algorithm.



Background of experimental study

Complexity of NS - O(n2), NSLS - O(n4), PNSLS - O(n3). 

It’s easy to see that ρ(G, CNS) ≤ ρ(G, CNSLS) and ρ(G, CPNSLS) ≤ ρ(G, CNSLS) for any 
G = (V, E). Let’s define ENS(G) = ρ(G, CNS) / ρ(G, CNSLS) and EPNSLS(G) = ρ(G, 
CPNSLS) / ρ(G, CNSLS) as errors of NS and PNSLS relatively to NSLS. 

Then define ENS(n) and EPNSLS(n) as expected values of the ENS and EPNSLS for all 
graphs with n vertices. Let’s formulate the main assumption to be investigated.

Assumption. As the number of vertices n increases, EPNSLS(n) tends to 1 and 
ENS(n) doesn’t tend to 1.



Experimental study

The experimental study was done on random graphs G(n, p) generated with 
Erdős-Rényi model. The number of vertices n ∈ {100, 200, …, 3000}, graph 
density p ∈ {0.33, 0.5, 0.67}. 100 examples were solved for each n and p. Based 
on the sample data, the sample mean of ENS(n) and EPNSLS(n) was calculated. 
Further, with significance level α = 0.05, we calculated the confidence interval. We 
used the quantile of the normal distribution to calculate the confidence interval. 

Statistical validity was obtained by the Kolmogorov-Smirnov test. For each n and 
p, the statistic was less than the critical value 1.36.



Error plot of ENS and EPNSLS for p = 0.33



Error plot of ENS and EPNSLS for p = 0.67



Average working time of NS, NSLS and PNSLS

n 500 600 700 800 900 1000 1200 1400 1600 1800 2000 2500 3000

NS 0 0 0 0 0 1 1 2.21 4.01 5.99 8.04 15.49 27.65

NSLS 0.07 1 1.04 2 3 4 6.65 10.73 16.45 25.32 32.84 66.45 119.39

PNSLS 0 0 0 0 0 1 1 2.32 4.02 6 8.04 15.78 27.78



Thank you for your attention.


