Evolutionary algorithm for speed scaling
scheduling problem

Yulia Zakharova

The research was supported by Russian Science Foundation grant
N 22-71-10015

OPTIMA—-2023

Sobolev Institute of Mathematics, Omsk, Russia

Report structure

» Problem Statement

» Previous Research and Our Results
» Local Search

» Evolutionary Algorithms

| 4

Computational Experiment

Lrj, dj| E

Input Data

J ={1,...,n} is the set of jobs.
W; is the volume of job j.

r; is the release date of job j.
d; is the deadline of job j.
Preemptions are disallowed.

Agreeable Release Dates and Deadlines

For any two jobs ¢ and j, relation r; < r; implies d; < d;.

Algorithms

Homogeneous Model in Speed-scaling

If a processor runs at speed s then the energy consumption is s* units
of energy per time unit, where a > 1 is a constant (practical studies
show that o < 3).

It is supposed that a continuous spectrum of processor speeds is
available.

The objective is to find a feasible schedule that minimizes the total
energy consumption.

(1)

NGE

E=84/

Related Results: Algorithms

Energy-Efficient Scheduling for Parallel Real-Time Tasks
Based on Level-Packing

Kong F. et. al. (SAC’11): two-dimensional strip packing problem,
energy consumption assignment

Energy efficient scheduling of parallel tasks on
multiprocessor computers

Li K. (Journal of Supercomputing, 2012): system partitioning, task
scheduling, power supplying

A genetic algorithm for energy-efficiency in job-shop
scheduling

Salido M.A. (Int. J. Adv. Manuf. Technol., 2015): genetic algorithm
with generational scheme — position-based encoding, problem specific
initial population, order crossover, shuffle mutation.

Related Results: Complexity

Llpmtn,r;,d;|E and Plagree,r;, d;|E

Yao, Demers, Shenker (1995): O(n?) time;

Shioura, Shakhlevich, Strusevich (2015): O(n?) time.
Ur, d;j| E

Antoniadis, Huang (2013): NP-hard, 2°%~%; ~
Bampis, Kononov, Letsios et. al. (2018): 2°71(1 + ¢)*B*.

Preemptive and Agreeable instances

Algorithm 1 YDS Algorithm (Yao, Demers, Shenker), 1995
1: While J % 0-

1.1 Let [t,t’) be the interval with maximum density, i.e., that max-

jej%,t,’) "
Tt

1.2 Process jobs i € J(t,t’) in interval [¢,t) using the earliest dead-
line policy with speed equal to the maximum density. Then
remove the jobs J(t,t') from J, and adjust the remaining jobs

as if the time interval [¢,¢') does not exist.

imizes

2: Return the resulting schedule and its objective value.

Preemptive vs Non-Preemptive

J1 J‘z 'Iﬂ—l
-l sy o=y
wy =1 twy =1 Up—1 =
[J'H i{
! Uy =1 !
HP“MT
| Jn | J]_ | Ju | J‘z | i IjIﬂ—l Jn o
a L 2 E 1 In—3 Zn—2 an-1 Lime
speed
T gy Jn I
i Jﬂ—l |
o 1 2 4] In—-3 In-2 In-1 time

Small Neighborhoods

Solution encoding

Solutions are encoded as permutations.

Consider a pair of indexes i < j and correct release dates and
deadlines as follows: 1’ = max{r;, r;} and d; = min{d;, d;}.
Objective value may be calculated in O(n?) time for the given
permutation.

Neighborhoods

Swap neighborhood: positions of two jobs are exchanged.
Insert neighborhood: inserting a job in some other position.

Partial Order Between Jobs

Release dates and deadlines give us a partial order between jobs: if
d; < r; then job ¢ must precedes job j.

We exchange only independent jobs in the neighborhoods.

Large Neighborhoods

Optimal Recombination Problem (ORP)

1

Given two parent solutions 7! and 2. It is required to find a

permutation 7’ such that:

() 7l =nlorml=m?foralli=1,...,n;

(IT) 7" has the minimum value of objective function E(n’) among all

permutations that satisfy condition (I).

Optimal recombination may be considered as a best-improving move
in a large neighbourhood defined by two parent solutions.

The ORP is NP-hard, but “almost all” instances are polynomially
solvable.

Population Local Search (PLS)! [NUMTA2023]

1:

Construct the initial population of m permutations (feasible in ac-
cordance with release dates and deadlines).
Apply local search based on swap or insert neighborhood to each
permutation.
For j=1 to m perform Steps 4-6:
Generate random sequence of permutations 7', ..., 7™.
Put 7' = OR(n!, n?).
For i=3 to m construct
7' = OR(7',).

: Improve 7’ by local search withing swap or insert neighborhood

and save as 7.

Put 7" = OR(7},).

For j=3 to m construct
7 = OR(r", 7).

Return 7" and E(n").

for

IR. Tinos, D. Whitley, G. Ochoa (2020): A New Generalized Partition Crossover
the Traveling Salesman Problem: Tunneling Between Local:Optima

Population Local Search (PLS) [NUMTA2023|

Genetic Algorithm with OR (GA : ORP) [NUMTA2023]

1: Construct the initial population of m permutations (feasible in ac-
cordance with release dates and deadlines).

2: Apply local search based on swap or insert neighborhood to each
permutation.

3: Until termination condition is met, perform
3.1 Select two parent permutations 7' and 72.
3.2 Apply swap or insert mutation to permutations 7! and 2.
3.3 Put ' = OR(rt, %).
3.4 Replace the worst permutation of the population by 7’.

4: Improve the record solution by local search withing swap or insert

neighborhood.
5: Return the best found solution.

Crossover Operators

Cycle Crossover (CX)

Parent 1

Parent 2

Cycle

Order Crossover (OX)

Parent 1

Parent 2

[4[s612[8]7]3]1]

Crossover Operators

Partially Mapped Crossover (PMX)

Edge Recombination (EX)

Parent 1 [2[7]6[3[1[5]4]8] Edge Table

1:[3, 5 5:]1, 4, 6

Parent2 [4[5]6]|2|8[7[3]1][2:]7, 6,8 |[6:7, 3,5, 2
3:16,1,7 |[7:]2, 6,8, 3

Offspring [6/3(1[5|4|8[7|2] [4:]5, 8 8:|4, 2, 7

Genetic Algorithm with Generational Scheme (GAgs)

1: Construct the initial population of m permutations.
2: Apply local search based on swap or insert neighborhood to each

permutation.
3: Until termination condition is met, perform

for i < 1 to Bm

2.1 Select two parent permutations 7' and 2.

2.2 Construct (7!/, 7?’) = Cross(wt, 72).

2.3 Apply insert mutation to permutations 7!’ and 7%’.
2.4 Compute the objective value of the offspring.

4: Return the best found solution.

Adaptive Technique

w1, if the new solution is a new global best,
wa, if the new solution is better than the current one,
ws, if the new solution is accepted,

wy, if the new solution is rejected.

Pa = Apa + (1 = N)@a.

Computational Experiment: Input Data

Number of jobs n = 50 and n = 100.

Parameter o = 2 and o = 3.

Release date r; is selected randomly from interval [0, 20].
Deadline d; is generated randomly from [r; + 1, r; 4+ 11].

Volume W; is chosen randomly from [5, 15].

Computational Experiment

Lower Bound

. Relative Deviation from

Series PLS GA: ORP
min aver max min aver max
Sa=2, n=50 0 0,9 6,1 0 1,7 8,2
Sa=3, n=50 0 2,1 10,1 0 3,2 12,7
Sa=2, n=100 1,7 3,1 6,1 2,8 5,2 7,9
Sa=3, n=100 0,5 5,8 15,1 0,8 8,8 17,3
Series GA : Adapt GA: PMX
min aver max min aver max
Sa=2, n=50 0 0,6 3,1 0 0,7 3,7
Sa=3, n=50 0 1,9 9,5 0 2,0 9,7
Sa=2, n=100 1,5 3,1 5,5 1,7 3,1 5,9
Sa=3, n=100 0,3 5,7 12,5 0,3 5,9 12,3
Series GA : Mut
min aver max
Sa=2, n =50 0 1,9 9,0
Sa=3, n =50 0 3,9 9,8
Sa=2, n =100 3,2 6,0 9,5
Sa=3, n =100 2,1 9,1 12,7

Speed Scaling Scheduling: P2|size;, energy|) C;

Processors and Jobs
m = 2 speed-scalable processors

J ={1,...,n} is the set of jobs:
V; is the processing volume (work) of job j
W; = n‘% is the work on one processor

F is the energy budget

Parameters

Preemption and migration are characterized for the systems with
single image of the memory.

Non-preemptive instances arise in systems with distributed memory.

Homogeneous Model in Speed-scaling:
P2|size;, energy|) C;

If a processor runs at speed s then the energy consumption is s* units
of energy per time unit, where o > 1 is a constant (practical studies
show that o < 3).

It is supposed that a continuous spectrum of processor speeds is
available.

F is the energy budget.

The aim is to find a feasible schedule with minimum total completion
time so that the energy consumption is not greater than a given
energy budget.

Experimental Results: P2|size;, energy|) C;

num | GA | LB num | GA | LB
1] 0.63 | 1.04 16 | 2.47 | 2.22
2| 0.80 | 1.97 17 | 2.68 | 1.60
31085 | 3.11 18 | 2.73 | 2.90
41094 | 1.39 19 | 3.00 | 1.82
51 1.05 | 1.31 20 | 3.27 | 2.90
6 | 1.15 | 0.94 21 | 3.39 | 2.07
71127 | 1.61 22 | 3.72 | 0.84
8 | 1.27 | 2.63 23 | 3.84 | 2.45
9137 | 1.18 24 | 3.90 | 1.89
10 | 1.59 | 1.21 25 | 3.92 | 2.26
11 | 1.70 | 2.14 26 | 3.93 | 3.67
12 | 1.75 | 1.90 27 | 3.96 | 2.16
13 | 1.89 | 2.68 28 | 4.13 | 2.25
14 | 1.99 | 1.56 29 | 4.32 | 1.63
15 | 2.43 | 2.89 30 | 4.39 | 2.73

Relative deviation in percentage of GA with 1-OX from Greedy
Algorithm solutions (GA) and lower bound (LB).

Conclusion and Further Research

» We proposed and investigated the evolutionary algorithm with var-
ious operators and schemes for the single processor speed scaling
scheduling problem.

» Experimental evaluation on instances of different structures shown
that the algorithms demonstrate competitive results.

» Further research can be undertaken to various optimized and/or
randomized recombination operators and comparison of them in
context of the presented algorithms and their composition; gener-
alize to the case of several processors.

Thank you for your attention!

