
Evolutionary algorithm for speed scaling
scheduling problem

Yulia Zakharova

The research was supported by Russian Science Foundation grant
N 22-71-10015

OPTIMA–2023

Sobolev Institute of Mathematics, Omsk, Russia

Report structure

▶ Problem Statement
▶ Previous Research and Our Results
▶ Local Search
▶ Evolutionary Algorithms
▶ Computational Experiment

1|rj, dj|E
Input Data
J = {1, ..., n} is the set of jobs.
Wj is the volume of job j.
rj is the release date of job j.
dj is the deadline of job j.
Preemptions are disallowed.

Agreeable Release Dates and Deadlines
For any two jobs i and j, relation ri < rj implies di ≤ dj .

Homogeneous Model in Speed-scaling
If a processor runs at speed s then the energy consumption is sα units
of energy per time unit, where α > 1 is a constant (practical studies
show that α ≤ 3).
It is supposed that a continuous spectrum of processor speeds is
available.
The objective is to find a feasible schedule that minimizes the total
energy consumption.

Related Results: Algorithms

Energy-Efficient Scheduling for Parallel Real-Time Tasks
Based on Level-Packing
Kong F. et. al. (SAC’11): two-dimensional strip packing problem,
energy consumption assignment

Energy efficient scheduling of parallel tasks on
multiprocessor computers
Li K. (Journal of Supercomputing, 2012): system partitioning, task
scheduling, power supplying

A genetic algorithm for energy-efficiency in job-shop
scheduling
Salido M.A. (Int. J. Adv. Manuf. Technol., 2015): genetic algorithm
with generational scheme – position-based encoding, problem specific
initial population, order crossover, shuffle mutation.

Related Results: Complexity

1|pmtn, rj, dj|E and P |agree, rj, dj|E
Yao, Demers, Shenker (1995): O(n2) time;
Shioura, Shakhlevich, Strusevich (2015): O(n3) time.

1|rj, dj|E
Antoniadis, Huang (2013): NP-hard, 25α−4;
Bampis, Kononov, Letsios et. al. (2018): 2α−1(1 + ε)αB̃α.

Preemptive and Agreeable instances

Algorithm 1 YDS Algorithm (Yao, Demers, Shenker), 1995
1: While J ≠ ∅:

1.1 Let [t, t′) be the interval with maximum density, i.e., that max-

imizes

∑
j∈J(t,t′)

Wj

t′−t .

1.2 Process jobs i ∈ J(t, t′) in interval [t, t′) using the earliest dead-
line policy with speed equal to the maximum density. Then
remove the jobs J(t, t′) from J , and adjust the remaining jobs
as if the time interval [t, t′) does not exist.

2: Return the resulting schedule and its objective value.

Preemptive vs Non-Preemptive

Small Neighborhoods

Solution encoding
Solutions are encoded as permutations.
Сonsider a pair of indexes i < j and correct release dates and
deadlines as follows: r′j = max{ri, rj} and d′i = min{di, dj}.
Objective value may be calculated in O(n2) time for the given
permutation.

Neighborhoods
Swap neighborhood: positions of two jobs are exchanged.
Insert neighborhood: inserting a job in some other position.

Partial Order Between Jobs
Release dates and deadlines give us a partial order between jobs: if
di < rj then job i must precedes job j.
We exchange only independent jobs in the neighborhoods.

Large Neighborhoods

Optimal Recombination Problem (ORP)
Given two parent solutions π1 and π2. It is required to find a
permutation π′ such that:
(I) π′

i = π1
i or π′

i = π2
i for all i = 1, . . . , n;

(II) π′ has the minimum value of objective function E(π′) among all
permutations that satisfy condition (I).

Optimal recombination may be considered as a best-improving move
in a large neighbourhood defined by two parent solutions.
The ORP is NP-hard, but “almost all” instances are polynomially
solvable.

Population Local Search (PLS)1 [NUMTA2023]

1: Construct the initial population of m permutations (feasible in ac-
cordance with release dates and deadlines).

2: Apply local search based on swap or insert neighborhood to each
permutation.

3: For j=1 to m perform Steps 4-6:
4: Generate random sequence of permutations π1, . . . , πm.

Put π′ = OR(π1, π2).
5: For i=3 to m construct

π′ = OR(π′, πi).
6: Improve π′ by local search withing swap or insert neighborhood

and save as π′
j .

7: Put π′′ = OR(π′
1, π

′
2).

8: For j=3 to m construct
π′′ = OR(π′′, π′

j).
9: Return π′′ and E(π′′).

1R. Tinos, D. Whitley, G. Ochoa (2020): A New Generalized Partition Crossover
for the Traveling Salesman Problem: Tunneling Between Local Optima

Population Local Search (PLS) [NUMTA2023]

Genetic Algorithm with OR (GA : ORP) [NUMTA2023]

1: Construct the initial population of m permutations (feasible in ac-
cordance with release dates and deadlines).

2: Apply local search based on swap or insert neighborhood to each
permutation.

3: Until termination condition is met, perform
3.1 Select two parent permutations π1 and π2.
3.2 Apply swap or insert mutation to permutations π1 and π2.
3.3 Put π′ = OR(π1, π2).
3.4 Replace the worst permutation of the population by π′.

4: Improve the record solution by local search withing swap or insert
neighborhood.

5: Return the best found solution.

Crossover Operators

Cycle Crossover (CX)

Order Crossover (OX)

Crossover Operators

Partially Mapped Crossover (PMX)

Edge Recombination (EX)

Genetic Algorithm with Generational Scheme (GAgs)

1: Construct the initial population of m permutations.
2: Apply local search based on swap or insert neighborhood to each

permutation.
3: Until termination condition is met, perform

for i← 1 to βm

2.1 Select two parent permutations π1 and π2.
2.2 Construct (π1′, π2′) = Cross(π1, π2).
2.3 Apply insert mutation to permutations π1′ and π2′.
2.4 Compute the objective value of the offspring.

4: Return the best found solution.

Adaptive Technique

ϕa =


w1, if the new solution is a new global best,
w2, if the new solution is better than the current one,
w3, if the new solution is accepted,
w4, if the new solution is rejected.

ρa = λρa + (1− λ)ϕa.

Computational Experiment: Input Data

Number of jobs n = 50 and n = 100.

Parameter α = 2 and α = 3.

Release date rj is selected randomly from interval [0, 20].

Deadline dj is generated randomly from [rj + 1, rj + 11].

Volume Wj is chosen randomly from [5, 15].

Computational Experiment: Relative Deviation from
Lower Bound

Series PLS GA : ORP
min aver max min aver max

Sα=2, n=50 0 0,9 6,1 0 1,7 8,2
Sα=3, n=50 0 2,1 10,1 0 3,2 12,7
Sα=2, n=100 1,7 3,1 6,1 2,8 5,2 7,9
Sα=3, n=100 0,5 5,8 15,1 0,8 8,8 17,3

Series GA : Adapt GA : PMX
min aver max min aver max

Sα=2, n=50 0 0,6 3,1 0 0,7 3,7
Sα=3, n=50 0 1,9 9,5 0 2,0 9,7
Sα=2, n=100 1,5 3,1 5,5 1,7 3,1 5,9
Sα=3, n=100 0,3 5,7 12,5 0,3 5,9 12,3

Series GA : Mut
min aver max

Sα=2, n = 50 0 1,9 9,0
Sα=3, n = 50 0 3,9 9,8
Sα=2, n = 100 3,2 6,0 9,5
Sα=3, n = 100 2,1 9,1 12,7

Speed Scaling Scheduling: P2|sizej, energy|
∑

Cj

Processors and Jobs
m = 2 speed-scalable processors

J = {1, . . . , n} is the set of jobs:
Vj is the processing volume (work) of job j

Wj :=
Vj

mj
is the work on one processor

E is the energy budget

Parameters
Preemption and migration are characterized for the systems with
single image of the memory.
Non-preemptive instances arise in systems with distributed memory.

Homogeneous Model in Speed-scaling:
P2|sizej, energy|

∑
Cj

If a processor runs at speed s then the energy consumption is sα units
of energy per time unit, where α > 1 is a constant (practical studies
show that α ≤ 3).

It is supposed that a continuous spectrum of processor speeds is
available.

E is the energy budget.

The aim is to find a feasible schedule with minimum total completion
time so that the energy consumption is not greater than a given
energy budget.

Experimental Results: P2|sizej, energy|
∑

Cj

num GA LB
1 0.63 1.04
2 0.80 1.97
3 0.85 3.11
4 0.94 1.39
5 1.05 1.31
6 1.15 0.94
7 1.27 1.61
8 1.27 2.63
9 1.37 1.18

10 1.59 1.21
11 1.70 2.14
12 1.75 1.90
13 1.89 2.68
14 1.99 1.56
15 2.43 2.89

num GA LB
16 2.47 2.22
17 2.68 1.60
18 2.73 2.90
19 3.00 1.82
20 3.27 2.90
21 3.39 2.07
22 3.72 0.84
23 3.84 2.45
24 3.90 1.89
25 3.92 2.26
26 3.93 3.67
27 3.96 2.16
28 4.13 2.25
29 4.32 1.63
30 4.39 2.73

Relative deviation in percentage of GA with 1-OX from Greedy
Algorithm solutions (GA) and lower bound (LB).

Conclusion and Further Research

▶ We proposed and investigated the evolutionary algorithm with var-
ious operators and schemes for the single processor speed scaling
scheduling problem.

▶ Experimental evaluation on instances of different structures shown
that the algorithms demonstrate competitive results.

▶ Further research can be undertaken to various optimized and/or
randomized recombination operators and comparison of them in
context of the presented algorithms and their composition; gener-
alize to the case of several processors.

Thank you for your attention!

