
Structure of Schedules for Problems with
Parallelizable Jobs

M. Sakhno, Yu. Zakharova

July 4, 2023

Omsk Department of Sobolev Institute of Mathematics SB RAS
The research is supported by RSF grant 22-71-10015.

Motivation (Parallel and Multiprocessor Jobs)

▶ Parallel jobs require more than one processor at the same time.
▶ Some jobs can not be performed asynchronously on modern com-

puters. Such situation takes place in multiprocessor graphics cards,
where the memory capacity of one processor is not sufficient.

▶ Many computer systems offer some kinds of parallelism. The en-
ergy efficient scheduling of parallel jobs arises in testing and reli-
able computing, parallel applications on graphics cards, computer
control systems and others.

Report Structure

▶ Problem Statement
▶ Previous Research
▶ Greedy heuristics and lower bounds
▶ Local improvements and experimental evaluation
▶ Conclusion and Further Research

Speed Scaling Scheduling: P2|sizej, energy|
∑

Cj

Processors and Jobs
m = 2 speed-scalable processors

J = {1, . . . , n} is the set of jobs:
Vj is the processing volume (work) of job j
sizej is the number of processors required by job j

Wj :=
Vj

sizej
is the work on one processor

E is the energy budget

Parameters
Preemption and migration are characterized for the systems with
single image of the memory.
Non-preemptive instances arise in systems with distributed memory.

Homogeneous Model in Speed-scaling

If a processor runs at speed s then the energy consumption is sα units
of energy per time unit, where α > 1 is a constant (practical studies
show that α ≤ 3).

It is supposed that a continuous spectrum of processor speeds is
available.

The aim is to find a feasible schedule with the minimum total
completion time so that the energy consumption is not greater than a
given energy budget.

Previous Research: Classic

Makespan
Drozdowski (2009): poly for parallel jobs, pmtn, rj
approx for parallel jobs, rj
Brucker (2000), Du, Leung (1989): parallel jobs: NP-hard,
strongly NP-hard for prec

Total Completion Time
Lee and Cai (1999): parallel jobs: strongly NP-hard
Schwiegelshohn et. al. (1998), J. Turek et. al. (1994):
approximation algorithms for parallel jobs
Hoogeveen (1994): single-mode jobs: NP-hard
Cai (1998): 2-approximation algorithm for single-mode jobs

Previous Research: Energy

Makespan
Pruhs, van Stee (2007), Bunde (2009): poly for single processor,
rj
approx for multiple processors, rj
Bampis et.al. (2014): approx for prec, rj

Total Completion Time
Pruhs et. al. (2008), Bunde (2009): poly for single processor
Shabtay, Kaspi (2006): approx for multiple processors

Parallel jobs
Kononov, Zakharova (2017-2022): NP-hardness and approx
Kong F. et. al. (2011): level-packing algorithms
Li K. (2012): partitioning-scheduling-supplying

Convex Program (KKT-conditions)

Two-processor Jobs

1

2

n∑
i=1

(n− i+ 1)pπi
→ min,

n∑
i=1

(Vπi
)αp1−α

πi
= E.

Single-processor Jobs

∑
j∈J

Cj(π) =

n
2∑

j=1

(n
2
− j + 1

)
(pπ2j−1 + pπ2j) → min,

∑
j∈J

pj
1−α(Vj)

α = E.

NP-hardness

Even-Odd Partition Problem
A = {a1, a2, . . . , a2n0

} is the ordered set such that∑
ai∈A ai = 2C, ai < ai+1, i = 1, . . . , 2n0 − 1

a2i+1 > 3a2i for i = 1, . . . , n0 − 1.
Question: whether A can be partitioned into two subsets A1 and A2∑

ai∈A1

ai =
∑

ai∈A2

ai = C, |A1| = |A2| = n0,

A1 contains only one element from each pair a2i−1, a2i, i = 1, . . . , n0.

Theorem
Problem P2|sizej , energy|

∑
Cj is NP-hard.

Greedy Heuristic (Algorithm 1)

Scheme
Step 1: Given an instance I of P2|sizej , energy|

∑
Cj , we generate

the instance I ′ with fully-parallelizable jobs, construct optimal
schedule S′ for jobs, corresponding to non-decreasing order of volumes
Vj , and find optimal durations pj .
Step 2: Calculate processing times of jobs for instance I:
2pj

sizej
, j = 1, . . . , n. Assign job j to the first available processor if j

requires one processor or to the two processors when both of them are
available if j is a two-processor job while keeping the order of jobs in
non-decreasing of volumes Vj .

Lemma∑
Cj(S

′) ≤
∑

C∗
j .

Theorem
A 2-approximate schedule can be found by Algorithm 1 in O(nlogn)
time for scheduling problem P2|sizej , energy|

∑
Cj .

Local improvements between blocks

1. Find blocks.

2. If a block consists of an odd number of single-processor jobs,
move the last job to the next block if possible.

Local improvements between blocks

1. Find blocks.

2. If a block consists of an odd number of single-processor jobs,
move the last job to the next block if possible.

Local improvements inside blocks

Greedy Heuristic with Local Improvements (Algorithm 2)

Step 1. Construct a schedule by Greedy Heuristic and find blocks in
the solution.

Step 2. Consequently apply the local improvements between blocks.

Step 3. Apply local improvements inside blocks to the given solution.

Step 4. Return the found solution.

Test instances

▶ alpha (1.5, 2.0, 2.5, 3.0)
▶ jobs count (50, 100)
▶ small jobs probability (0.0, 0.3, 0.5, 0.7, 1.0)
▶ single jobs probability (0.3, 0.5, 0.7)
▶ series (11, 12, 21, 22)

Instances count in series = 30

Series 12

SMALL1 = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100)

SMALL2 = (10, 11, 12, 13, 14, 15, 16, 17, 18, 19)

LARGE1 = (200, 275, 350, 425, 500, 575, 650, 725, 800, 875)

LARGE2 = (520, 540, 560, 580, 600, 620, 640, 660, 680, 700)

Test results for series 12
α = 1.5, n = 50

Series 21

SMALL1 = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100)

SMALL2 = (10, 11, 12, 13, 14, 15, 16, 17, 18, 19)

LARGE1 = (200, 275, 350, 425, 500, 575, 650, 725, 800, 875)

LARGE2 = (520, 540, 560, 580, 600, 620, 640, 660, 680, 700)

Test results for series 21
α = 1.5, n = 50

Series 11

SMALL1 = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100)

SMALL2 = (10, 11, 12, 13, 14, 15, 16, 17, 18, 19)

LARGE1 = (200, 275, 350, 425, 500, 575, 650, 725, 800, 875)

LARGE2 = (520, 540, 560, 580, 600, 620, 640, 660, 680, 700)

Test results for series 11
α = 1.5, n = 50

Series 22

SMALL1 = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100)

SMALL2 = (10, 11, 12, 13, 14, 15, 16, 17, 18, 19)

LARGE1 = (200, 275, 350, 425, 500, 575, 650, 725, 800, 875)

LARGE2 = (520, 540, 560, 580, 600, 620, 640, 660, 680, 700)

Test results for series 22
α = 1.5, n = 50

Blocks

Test results for blocks

α = 1.5, n = 50

Conclusion

Test Conclusions
parameter best result

alpha 1.5
jobs count 100

small jobs probability 0.3
single jobs probability 0.3

blocks 8
series 22

The average relative deviation from the lower bound is not greater
than 8% over all considered series.
The difference between the record values of GH and GHLI is
statistically significant at level less than 0.05 on all series.

Comparison with single-processor case
The comparison with the single-processor case showed that even
partial parallelization can lead to improvement.

Further Research

▶ More accurate selections in local improvements.
▶ Consideration of other neighborhoods where blocks are being re-

structured using destroy and repair method.
▶ Investigation of lower bounds.
▶ Comparison with commercial solvers.
▶ Developing meta heuristics.

Thank you for your attention!

General Convex Model∑
j∈J

xjik ≤ 1, i ∈ I, k ∈ K,

∑
k∈K

wjk = 1, j ∈ J,

∑
i∈I

xjik = sizejwjk, k ∈ K, j ∈ J,

T f
jk ≥ T st

jk, k ∈ K, j ∈ J,

T f
jk − T st

jk = wjkpj , k ∈ K, j ∈ J,∑
k∈K

(T f
jk − T st

jk) ≥ pj , j ∈ J,

T st
jk ≥ T f

j′k′ − Tmax(2− xjik − xj′ik′),

j ̸= j′ ∈ J, i ∈ I, k′ < k ∈ K, k ̸= 1.

sjpj ≥ Wj , j ∈ J.∑
j∈J

sizejWj(sj)
α−1 ≤ E.

Comparison with Gurobi Solver

Instance Algorithm Gurobi Presolve Gurobi Record (12 threads) % LB, %
LB Obj % Obj Time, sec LB Obj Time, sec

0.5-0.5-11 1173.5 1421.3 21.1 1553.15 14 1333.07 1333.07∗ 1270 (13292) 6.6 11.9
0.5-0.5-12 694.1 786.1 13.2 987.74 21 763.65 763.65∗ 18357 (34095) 2.9 9.1
0.5-0.5-21 812.4 1011.6 24.5 1337.68 21 981.68 981.68∗ 17810 (58895) 3.0 17.2
0.5-0.5-22 1984.5 2330.1 17.4 2544.72 38 2231.22 2231.22∗ 1795 (6000) 4.4 11.0

-1-0.5-block 1682.3 2470.9 46.8 2442.63 24 1970.97 1970.97∗ 1060 (5555) 25.3 14.6
0.3-0.0-11 7556.34 7768.93 2.8 10042.25 48 7699.46 7699.46∗ 645(32978.68) 0.90 1.85
0.3-0.0-12 7904.26 8521.14 7.8 10247.32 47 8384.59 8384.59∗ 630 (51781.12) 1.62 5.72
0.3-0.0-21 4184.31 4650.28 11.1 4733.77 101 3910.78 4407.69 12191 5.50 5.06
0.3-0.0-22 6594.20 7250.91 9.9 7669.93 83 5059.43 7077.13 120 2.45 6.82

-1-0.0-block 7434.83 9141.18 22.9 10254.9 81 5857.43 8010.14 4851 14.12 7.18
0.7-0.7-11 145.85 161.99 11.0 200.05 62 82.01 158.27 5080 2.35 7.84
0.7-0.7-12 241.54 309.48 28.1 691.85 10 239.54 301.85 445 2.52 19.97
0.7-0.7-21 58.18 97.99 68.4 99.83 8 96.43 96.43∗ 22095 (24395) 1.61 39.65
0.7-0.7-22 409.79 480.05 17.1 547.65 14 439.97 465.47 18880 3.13 11.96

-1-0.7-block 1253.93 1809.16 44.2 2697.62 25 1436.99 1436.99∗ 250 (7955) 25.89 12.73

Comparison with single-processor case

α = 1.5, n = 50

single small EA2 E1 MAXw MAXb AV Gw AV Gb COUNTb

0.3 0.0 2.16 4.76 – 3.94 – 2.55 30
0.3 0.3 3.47 6.15 0.43 4.77 0.43 2.70 29
0.3 0.5 3.83 7.75 – 6.75 – 3.69 30
0.3 0.7 5.05 9.66 1.15 7.93 1.15 4.43 29
0.3 1.0 2.28 5.22 – 4.02 – 2.80 30
0.5 0.0 2.43 5.07 – 4.04 – 2.64 30
0.5 0.3 3.77 6.61 – 4.21 – 2.77 30
0.5 0.5 4.23 8.16 0.20 6.29 0.20 3.87 29
0.5 0.7 5.69 10.29 – 7.00 – 4.24 30
0.5 1.0 3.49 5.57 – 3.86 – 1.97 30
0.7 0.0 3.45 5.15 – 3.47 – 1.80 30
0.7 0.3 4.35 6.60 – 4.06 – 2.28 30
0.7 0.5 5.29 8.24 – 5.80 – 2.87 30
0.7 0.7 6.76 10.51 3.45 7.31 2.59 3.93 28
0.7 1.0 3.68 5.67 – 3.91 – 1.88 30

