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Open shop problem

Open Shop(Om||Crax)

Machines: My, M5 ... M,
Jobs: J1,J2 .

3

I
[ 1
Cmax

@ 02||Cpax is polynomially solvable (Gonzalez, Sahni 1976)
@ O3||Cnax is NP-hard (Gonzalez, Sahni 1976)



Proportionate Open Shop problem

J] J2 J3 Jn
My | pn1 P2 p13 P1n
M> | po1 p2 p23 P2n
Ms | ps1 p32 P33 P3n
M, m Pm1 Pm2 Pm3 Pmn

Proportionate Open Shop (Om|j—prpt|Cmax): pPjj = pj

@ O3|j—prpt|Cmax is NP-hard (Lui, Bulfin 1987)

o O3|j—prpt|CGnax can be solved in pseudopolynomial time

(Sevastyanov 2019)

DA



S
Routing Open shop model
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Routing Open shop model

ROm|j—prpt, G = X|Rmax




o
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Routing Open shop model

ROm|j—prpt, G = X|Rmax ROm|j—prpt, Rtt, G = X|Rmax

ﬁOmU—prpt7 G = X|Rmax
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Standard lower bound

N I J3 In
My | pun pi2 P13 pin | h
My | p1 p2 P23 Pan | k
Ms | ps1 p2 pss3 P3n | h
Mm Pm1 Pm2 Pm3 Pmn Im
di d> d3 d,

Lower bound for Om|| Cyax

C= max{émax, dmax}




Standard lower bound

N I J3 In
M1 | pu P12 P13 ... P1in h
My | po1 p22 P23 .- pan | kR
Ms | ps1 ps2 psz ... pan |
Mm Pm1 Pm2 Pm3 s Pmn Im
di d> ... d,

Lower bound for Om|| Cyax

C= max{émax, dmax}

.

Lower bound for ROm||Rmax

R = max{lmax + T*, ma‘>/<(dmax(v) + 2dist(vo, v))}
ve

where dist(v;, vj) is the distance between nodes v; and v;.
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Standard lower bound

Lower bound for ROm||Rmax

R =max{lmax + T", mea‘>/<(dmax(v) + 2dist(vo, v))}

where dist(v;, vj) is the distance between nodes v; and v;.




Standard lower bound

Lower bound for ROm||Rmax

R = max{lmax + T*, mea‘>/<(dmax(v) + 2dist(vo, v))}

where dist(v;, v;) is the distance between nodes v; and v;.
v

Lower bound for RO2|Rtt|Rmax

R= max{max(@; + T7),

max (dmax(v) + dist1(vo, v) + dista(vo, v))}
W




Standard lower bound

Lower bound for RO2|Rtt|Rmax

R = max{max(& + T7),

ma‘>/<(dmax(v) + disty(vo, v) + dista(vo, v))}
ve

Lower bound for ?O2|Rtt|RmaX

R = max{max(ﬁ,- +T7), ma\i((dmax(v) + <(Fst>'min(vo, v))},
ve

)
distmin(v, u) = min{distl(v7 u) + disty(u, v), dista(v, u) + disty (u, v)}

v




Optima Localization Problem

Optima Localization Problem

Find minimal value p such that for all instances I: R%.. (/) € [R, pR].

Optima localization intervals for RO2||Rmax:
o [R, &R] for RO2|G = Ka|Rumax problem (Averbakh et al 2005)

o [R, gl?] for RO2|G = K3|Rmax problem (Chernykh, Lgotina 2016)

o [R, gl?] for ﬁO2|G = tree|Rmax problem (Chernykh, Krivonogova
2019)



Optima Localization Problem

Optima Localization Problem

Find minimal value p such that for all instances I: R*_ (/) € [R, pR].

max

Optima localization intervals for RO2|Rtt|Rmax:
o [R,2R] for RO2|Rtt, G = K|Rmax 1 RO2|Rtt, G = K3|Rmax
problem (Chernykh, Lgotina 2019)
o [R,2R] for ?O2|Rtt, G = tree|Rpax problem (Chernykh,
Krivonogova 2019)



Optima Localization Problem

Optima Localization Problem

Find minimal value p such that for all instances I: R%.. (/) € [R, pR].

Optima localization intervals for proportionate problems:
o [C, Y] for O3|j — prpt|Cmax problem (Sevastyanov 2019)

o [R, LR] for RO2|j — prpt, G = K3|Rmax and
RO2|j — prpt, G = K3|Rmax problems (Pyatkin, Chernykh, 2022)



Optima Localization Problem

Optima Localization Problem

Find minimal value p such that for all instances I: R*_ (/) € [R, pR].

Problem Opt. loc. | Problem with Qtt/Rtt Opt. loc.
RO2|G = Kz|Rmax [R,6/5R] | RO2|G = K3, Rtt|Rmax [R,5/4R]
RO2|G = K3|Rmax [R,6/5R] | RO2|G = K3, Rtt|Rmax [R,5/4R]
RO2|G = tree|Rmax [R,6/5R] | RO2|G = tree, Rtt|Rmax [R,5/4R]
RO2|j-prpt, G = Ka|Rmax | [R,7/6R] | RO2|j-prpt, G = Ky, Rtt|Rmax ?
RO2|j-prpt, G = K3|Rmax | [R,7/6R] | RO2|j-prpt, G = Kz, Rtt|Rmax ?
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Job aggregation

N =T

Definition

A node v is overloaded, if

A(v) > R(1) — distmin(vo, v)







Terminal edge contraction

J = a+c<TSt1(U7V)
e o b+WStz(u,v)
v v
J=(%)
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Terminal edge contraction

J = a+m1(u,v)
- A
e b+dista(u,v)

Definition

Terminal edge e is overloaded, if

< <o <o =
a+ b+ disty(u, v) + dista(u, v) + distmin(vo, u) > R,




Instance reduction procedure

Algorithm A:

@ For each underloaded v € V perform the job aggregation of the set
T(v).
© For each terminal node v # vy with single job and its incident edge
e=[u,v]
@ If e is underloaded, then
@ Perform the contraction of e,
© If u is underloaded, then perform the job aggregation of the set
I (uv).
@ If v is overloaded then perform the job aggregations in J(v) to
obtain an irreducible instance.



Instance reduction procedure

Algorithm A:

@ For each underloaded v € V perform the job aggregation of the set
T(v).
© For each terminal node v # vy with single job and its incident edge
e=[u,v]
@ If e is underloaded, then
@ Perform the contraction of e,
© If u is underloaded, then perform the job aggregation of the set
I (uv).
@ If v is overloaded then perform the job aggregations in J(v) to
obtain an irreducible instance.

Any instance of ﬁOZ\RtﬂRmax contains at most one overloaded element
(node or edge).
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Possible outputs of algorithm A for G = tree
Case 1:

« - —e

Case 2:
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Previous results

Theorem (Chernykh |., Lgotina E., 2021)

Let / be an instance of the RO2|G = tree|Rmax problem, I is obtained
from | by the algorithm A, and one of the following conditions is true:

© G(/) has a single node vy,
Q G(i) is a chain, connecting vo with an overloaded node v, which
contains exactly three jobs,

© G(I) is a chain, connecting vo with a node v with single job at each
node, and the edge incident to v is overloaded.

Then one can in linear time build a feasible schedule S(/) such that
Rmax(S) = R(1).




Main results: identical travel times

For any instance of the ﬁOQ[{'—prpt, G = tree|Rmax problem a feasible
schedule S with Rmax(S) < £R can be constructed in linear time O(n).
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Main results: identical travel times

For any instance of the ﬁOQ[{'—prpt, G = tree|Rmax problem a feasible
schedule S with Rmax(S) < £R can be constructed in linear time O(n).

Jk {Jav Jﬂ}
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Terminal edge contraction operation would violate the j-prpt property.

J = a+disty (u,v)
- hrrd
b+dista(u,v)
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Main results: unrelated travel times

Terminal edge contraction operation would violate the j-prpt property
J = a+cm1(u,v)
b+c<7>stz(u,v)

Replace dist;(u, v) and dista(u, v) with the max{dist;(u, v), distz(u, v)}
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Main results: unrelated travel times

Terminal edge contraction operation would violate the j-prpt property
J/ _ a+cm1(u,v)
b+d<T>st2(u,v)
Replace dist;(u, v) and dista(u, v) with the max{dist;(u, v), distz(u, v)}
— S
R() = max{@ + 77, ma\>/<(dmax(v) + distmin(vo, v))}
ve

>
distmin = min{dist; (v, u) + dista(u, v), dista(v, u) + dist; (u, v)}



Main results: unrelated travel times
Terminal edge contraction operation would violate the j-prpt property.
J = a+c(7>st1(u,v)
b+¢<rs1>.“2(u,v)
Replace dist;(u, v) and dista(u, v) with the max{dist;(u, v), distz(u, v)}

R(I) = max{zur Ty, max(dmax(v) + distmin (o, v))}
ve

ﬁm;n = min{dist,(v, u) + disty(u, v), dista(v, u) + dist; (u, v)}

Definition

Distance functions dist; and dist, are called comparable, if

Yu,v € V disti(u, v) > dista(u, v).




Main results: unrelated travel times

built in linear time.

For any instance / of the ﬁO2U—prpt, Rtt, G = tree|Rmax with
comparable distances a feasible schedule S with Rynax(S) < %R can be




Main results and future research

Problem Opt. loc. | Problem with Qtt/Rtt Opt. loc.
RO2|G = Ka|Rmax [R,6/5R] | RO2|G = Ka, Rtt|Rmax [R,5/4R]
RO2|G = K3|Rmax [R,6/5R] | RO2|G = K, Rtt|Rumax [R,5/4R]
RO2|G = tree|Rmax [R,6/5R] | RO2|G = tree, Rtt|Rmax [R,5/4R]
RO2|j-prpt, G = Ka|Rmax | [R,7/6R] | RO2|j-prpt, G = Kz, Rtt|Rmax | [R,7/6R]
RO2|j-prpt, G = K3|Rmax | [R,7/6R] | RO2|j-prpt, G = K3, Rtt|Rmax ?

RO2|j-prpt, G = tree|Rmax | [R,7/6R] | RO2|j-prpt, G = tree, Rtt| Rmax ?
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Thank you for attention!
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