Approximation algorithms for two-machine proportionate routing open shop on a tree

Ilya Chernykh, Olga Krivonogova, Anna Shmyrina

Sobolev Institute of Mathematics

The research was supported by Russian Science Foundation grant N 22-71-10015

Open shop problem

- $O2||C_{max}$ is polynomially solvable (Gonzalez, Sahni 1976)
- O3||C_{max} is NP-hard (Gonzalez, Sahni 1976)

Proportionate Open Shop problem

	J_1	J_2	J_3	 J_n
M_1	p ₁₁	p_{12}	p_{13}	 p_{1n}
M_2	p ₂₁	p_{22}	p_{23}	 p_{2n}
M_3	p ₃₁	p_{32}	p_{33}	 p_{3n}
:	:	P ₁₂ P ₂₂ P ₃₂ : : : :	:	 :
M_m	p_{m1}	p_{m2}	p_{m3}	 p_{mn}

Proportionate Open Shop $(Om|j-prpt|C_{max})$: $p_{ij} = p_j$

- O3|j-prpt| C_{max} is NP-hard (Lui, Bulfin 1987)
- O3|j-prpt| C_{max} can be solved in pseudopolynomial time (Sevastyanov 2019)

 $ROm|j-prpt, G = X|R_{max}$

$$ROm|j-prpt, G = X|R_{max}|ROm|j-prpt, Rtt, G = X|R_{max}|$$

$$\textit{ROm}|j{-}\mathsf{prpt}, \textit{G} = \textit{X}|\textit{R}_\mathsf{max}| \ \textit{ROm}|j{-}\mathsf{prpt}, \textit{Rtt}, \textit{G} = \textit{X}|\textit{R}_\mathsf{max}|$$

$$\overrightarrow{R}$$
 $Om|j-prpt, G = X|R_{max}$

	J_1	J_2	J_3	 J_n	
M_1 M_2 M_3	p_{11}	p_{12}	p ₁₃	 p_{1n}	1/1
M_2	p ₂₁	p_{22}	p_{23}	 p_{2n}	12
M_3	p ₃₁	p_{32}	p ₃₃	 p_{3n}	13
÷	:	:	:	 :	:
M_m	p_{m1}	p_{m2}	p_{m3}	 p_{mn}	l _m
	d_1	d_2	d_3	 d_n	

	J_1	J_2	J_3	 J_n	
M_1 M_2 M_3	p_{11}	p_{12}	p_{13}	 p_{1n}	1/1
M_2	p ₂₁	p_{22}	$p_{13} \\ p_{23}$	 p_{2n}	12
M_3	p ₃₁	p_{32}	p ₃₃	 p_{3n}	13
:	:	:	:	 :	:
M_m	p_{m1}	p_{m2}	p_{m3}	 p_{mn}	l _m
	d_1	d_2	d_3	 d_n	

Lower bound for $Om||C_{max}|$

$$\bar{C} = \max\{\ell_{\mathsf{max}}, d_{\mathsf{max}}\}$$

	J_1	J_2	J_3	 J_n	
$M_1 \\ M_2 \\ M_3$	p ₁₁	p ₁₂	p ₁₃	 p_{1n}	/1
M_2	p ₂₁	p_{22}	p_{23}	 p_{2n}	12
M_3	p ₃₁	p_{32}	p ₃₃	 p_{3n}	13
:	:	:	:	 :	:
M_m	p_{m1}	p_{m2}	p_{m3}	 p_{mn}	l _m
	d_1	d_2	d_3	 d_n	

Lower bound for $Om||C_{max}|$

$$\bar{C} = \max\{\ell_{\mathsf{max}}, d_{\mathsf{max}}\}$$

Lower bound for $ROm||R_{max}|$

$$\bar{R} = \max\{\ell_{\mathsf{max}} + T^*, \max_{v \in V}(d_{\mathsf{max}}(v) + 2\mathit{dist}(v_0, v))\}$$

where $dist(v_i, v_j)$ is the distance between nodes v_i and v_j .

Lower bound for $ROm||R_{max}|$

$$\bar{R} = \max\{\ell_{\mathsf{max}} + T^*, \max_{v \in V}(d_{\mathsf{max}}(v) + 2\mathit{dist}(v_0, v))\}$$

where $dist(v_i, v_j)$ is the distance between nodes v_i and v_j .

Lower bound for $ROm||R_{max}|$

$$ar{R} = \max\{\ell_{\mathsf{max}} + \mathcal{T}^*, \max_{v \in V}(d_{\mathsf{max}}(v) + 2\mathit{dist}(v_0, v))\}$$

where $dist(v_i, v_j)$ is the distance between nodes v_i and v_j .

Lower bound for $RO2|Rtt|R_{max}$

$$ar{R} = \max_i \left\{ \max_i (\ell_i + T_i^*), \\ \max_{v \in V} \left(d_{\mathsf{max}}(v) + dist_1(v_0, v) + dist_2(v_0, v) \right) \right\}$$

Lower bound for $RO2|Rtt|R_{max}$

$$ar{R} = \max_i \left\{ \max_i (\ell_i + T_i^*), \\ \max_{v \in V} \left(d_{\max}(v) + dist_1(v_0, v) + dist_2(v_0, v) \right) \right\}$$

Lower bound for \overrightarrow{R} $O2|Rtt|R_{max}$

$$ar{R} = \max \left\{ \max(\ell_i + T_i^*), \max_{v \in V} (d_{\mathsf{max}}(v) + \overleftrightarrow{dist}_{\mathsf{min}}(v_0, v)) \right\},$$

$$\stackrel{\longleftrightarrow}{dist}_{\mathsf{min}}(v,u) = \mathsf{min} \bigg\{ \mathit{dist}_1(v,u) + \mathit{dist}_2(u,v), \mathit{dist}_2(v,u) + \mathit{dist}_1(u,v) \bigg\}$$

Optima Localization Problem

Find minimal value ρ such that for all instances $I: R_{\max}^*(I) \in [\bar{R}, \rho \bar{R}].$

Optima localization intervals for $RO2||R_{max}$:

- $[\bar{R}, \frac{6}{5}\bar{R}]$ for $RO2|G = K_2|R_{\sf max}$ problem (Averbakh et al 2005)
- $[\bar{R}, \frac{6}{5}\bar{R}]$ for $RO2|G = K_3|R_{\sf max}$ problem (Chernykh, Lgotina 2016)
- $[\bar{R}, \frac{6}{5}\bar{R}]$ for \overrightarrow{R} $O2|G=tree|R_{\rm max}$ problem (Chernykh, Krivonogova 2019)

Optima Localization Problem

Find minimal value ρ such that for all instances $I: R_{\max}^*(I) \in [\bar{R}, \rho \bar{R}].$

Optima localization intervals for $RO2|Rtt|R_{max}$:

- $[\bar{R}, \frac{5}{4}\bar{R}]$ for $RO2|Rtt, G = K_2|R_{max}$ и $RO2|Rtt, G = K_3|R_{max}$ problem (Chernykh, Lgotina 2019)
- $[\bar{R}, \frac{5}{4}\bar{R}]$ for \overrightarrow{R} O2 $|Rtt, G=tree|R_{max}$ problem (Chernykh, Krivonogova 2019)

Optima Localization Problem

Find minimal value ρ such that for all instances $I: R_{\max}^*(I) \in [\bar{R}, \rho \bar{R}]$.

Optima localization intervals for proportionate problems:

- $[\bar{C}, \frac{10}{9}\bar{C}]$ for $O3|j-prpt|C_{\sf max}$ problem (Sevastyanov 2019)
- $[\bar{R}, \frac{7}{6}\bar{R}]$ for $RO2|j-prpt, G=K_3|R_{max}$ and $RO2|j-prpt, G=K_2|R_{max}$ problems (Pyatkin, Chernykh, 2022)

Optima Localization Problem

Find minimal value ρ such that for all instances $I: R_{\max}^*(I) \in [\bar{R}, \rho \bar{R}].$

Problem	Opt. loc.	Problem with Qtt/Rtt	Opt. loc.
$RO2 G = K_2 R_{max}$	$[\bar{R}, 6/5\bar{R}]$	$RO2 G = K_2, Rtt R_{max}$	$[\bar{R}, 5/4\bar{R}]$
$RO2 G = K_3 R_{max}$	$[\bar{R}, 6/5\bar{R}]$	$RO2 G = K_3, Rtt R_{max}$	$[\bar{R}, 5/4\bar{R}]$
$RO2 G = tree R_{max}$	$[\bar{R}, 6/5\bar{R}]$	$RO2 G = tree, Rtt R_{max}$	$[\bar{R}, 5/4\bar{R}]$
$RO2 j$ -prpt, $G = K_2 R_{max}$	$[\bar{R}, 7/6\bar{R}]$	$RO2 j$ -prpt, $G = K_2$, $Rtt R_{max}$?
$RO2 j$ -prpt, $G = K_3 R_{max}$	$[\bar{R},7/6\bar{R}]$	$RO2 j$ -prpt, $G = K_3$, $Rtt R_{max}$?

Definition

A node v is overloaded, if

$$\Delta(v) > \bar{R}(I) - \stackrel{\longleftrightarrow}{dist_{\min}}(v_0, v)$$

Terminal edge contraction

Terminal edge contraction

Terminal edge contraction

Definition

Terminal edge e is overloaded, if

$$a + b + \overrightarrow{dist}_1(u, v) + \overrightarrow{dist}_2(u, v) + \overrightarrow{dist}_{min}(v_0, u) > \bar{R},$$

Instance reduction procedure

Algorithm A:

- For each underloaded $v \in V$ perform the job aggregation of the set $\mathcal{J}(v)$.
- **② For each** terminal node $v \neq v_0$ with single job and its incident edge e = [u, v]
 - If e is underloaded, then
 - Perform the contraction of e,
 - **②** If u is underloaded,, then perform the job aggregation of the set $\mathcal{J}(u)$.
- **If** v is overloaded **then** perform the job aggregations in $\mathcal{J}(v)$ to obtain an irreducible instance.

Instance reduction procedure

Algorithm A:

- **§** For each underloaded $v \in V$ perform the job aggregation of the set $\mathcal{J}(v)$.
- **② For each** terminal node $v \neq v_0$ with single job and its incident edge e = [u, v]
 - If e is underloaded, then
 - Perform the contraction of e,
 - **②** If u is underloaded,, then perform the job aggregation of the set $\mathcal{J}(u)$.
- **If** v is overloaded **then** perform the job aggregations in $\mathcal{J}(v)$ to obtain an irreducible instance.

Lemma

Any instance of \overrightarrow{R} $O2|Rtt|R_{max}$ contains at most one overloaded element (node or edge).

Possible outputs of algorithm \mathcal{A} for G = tree

Case 1:

Possible outputs of algorithm \mathcal{A} for G = tree

Case 1:

Possible outputs of algorithm ${\cal A}$ for ${\it G}={\it tree}$

Case 1:

Case 2:

Possible outputs of algorithm \mathcal{A} for G = tree

Case 1:

Case 2:

Possible outputs of algorithm \mathcal{A} for G = tree

Case 2:

Case 3:

Possible outputs of algorithm ${\cal A}$ for ${\it G}={\it tree}$

Case 1: Case 2: Case 3:

Possible outputs of algorithm \mathcal{A} for G=tree

Case 1:

Case 2:

Case 3:

Possible outputs of algorithm \mathcal{A} for G = tree

Case 1:

Case 2:

Case 3:

Previous results

Theorem (Chernykh I., Lgotina E., 2021)

Let I be an instance of the $RO2|G = tree|R_{\text{max}}$ problem, \tilde{I} is obtained from I by the algorithm \mathcal{A} , and one of the following conditions is true:

- $G(\tilde{I})$ has a single node v_0 ,
- ② $G(\tilde{I})$ is a chain, connecting v_0 with an overloaded node v, which contains exactly three jobs,
- **③** $G(\tilde{I})$ is a chain, connecting v_0 with a node v with single job at each node, and the edge incident to v is overloaded.

Then one can in linear time build a feasible schedule $S(\tilde{I})$ such that $R_{\max}(S) = \bar{R}(I)$.

Main results: identical travel times

Theorem 1

For any instance of the $\overrightarrow{R}O2|j\text{-}prpt$, $G = tree|R_{max}$ problem a feasible schedule S with $R_{max}(S) \leqslant \frac{7}{6}\overline{R}$ can be constructed in linear time O(n).

Main results: identical travel times

Theorem 1

For any instance of the \overrightarrow{R} O2|j-prpt, $G = tree|R_{max}$ problem a feasible schedule S with $R_{max}(S) \leqslant \frac{7}{6}\overline{R}$ can be constructed in linear time O(n).

Terminal edge contraction operation would violate the *j-prpt* property.

$$J' = \begin{pmatrix} \overrightarrow{a} + \overrightarrow{dist_1}(u, v) \\ \longleftrightarrow b + \overrightarrow{dist_2}(u, v) \end{pmatrix}$$

Terminal edge contraction operation would violate the *j-prpt* property.

$$J' = \begin{pmatrix} \overrightarrow{a} + \overrightarrow{dist_1}(u, v) \\ \longleftrightarrow \\ b + \overrightarrow{dist_2}(u, v) \end{pmatrix}$$

Replace $dist_1(u, v)$ and $dist_2(u, v)$ with the $\max\{dist_1(u, v), dist_2(u, v)\}$

Terminal edge contraction operation would violate the *j-prpt* property.

$$J' = \begin{pmatrix} \overrightarrow{a} + \overrightarrow{dist_1}(u, v) \\ \longleftrightarrow \\ b + \overrightarrow{dist_2}(u, v) \end{pmatrix}$$

Replace $dist_1(u, v)$ and $dist_2(u, v)$ with the $\max\{dist_1(u, v), dist_2(u, v)\}$

$$ar{R}(I) = \max \left\{ \ell + T_1^*, \max_{v \in V} (d_{\mathsf{max}}(v) + \overleftrightarrow{dist}_{\mathsf{min}}(v_0, v)) \right\}$$

$$\overrightarrow{dist}_{\mathsf{min}} = \mathsf{min} \{ \mathit{dist}_1(v, u) + \mathit{dist}_2(u, v), \mathit{dist}_2(v, u) + \mathit{dist}_1(u, v) \}$$

Terminal edge contraction operation would violate the *j-prpt* property.

$$J' = \begin{pmatrix} \longleftrightarrow \\ a + dist_{1}(u, v) \\ \longleftrightarrow \\ b + dist_{2}(u, v) \end{pmatrix}$$

Replace $dist_1(u, v)$ and $dist_2(u, v)$ with the $\max\{dist_1(u, v), dist_2(u, v)\}$

$$ar{R}(I) = \max \left\{ \ell + T_1^*, \max_{v \in V} (d_{\mathsf{max}}(v) + \overset{\longleftrightarrow}{dist}_{\mathsf{min}}(v_0, v)) \right\}$$

$$\overrightarrow{dist}_{\min} = \min\{dist_1(v, u) + dist_2(u, v), dist_2(v, u) + dist_1(u, v)\}$$

Definition

Distance functions $dist_1$ and $dist_2$ are called *comparable*, if

$$\forall u, v \in V \ dist_1(u, v) \geqslant dist_2(u, v).$$

Theorem 2

For any instance I of the \overrightarrow{R} O2|j-prpt, Rtt, $G = tree|R_{max}$ with comparable distances a feasible schedule S with $R_{max}(S) \leqslant \frac{7}{6}\overline{R}$ can be built in linear time.

Main results and future research

Problem	Opt. loc.	Problem with Qtt/Rtt	Opt. loc.
$RO2 G = K_2 R_{\text{max}}$	$[\bar{R}, 6/5\bar{R}]$	$RO2 G = K_2, Rtt R_{max}$	$[\bar{R}, 5/4\bar{R}]$
$RO2 G = K_3 R_{\text{max}}$	$[\bar{R}, 6/5\bar{R}]$	$RO2 G = K_3, Rtt R_{max}$	$[\bar{R}, 5/4\bar{R}]$
$RO2 G = tree R_{max}$	$[\bar{R}, 6/5\bar{R}]$	$RO2 G = tree, Rtt R_{max}$	$[\bar{R}, 5/4\bar{R}]$
$RO2 j$ -prpt, $G = K_2 R_{max}$	$[\bar{R}, 7/6\bar{R}]$	$RO2 j$ -prpt, $G = K_2$, $Rtt R_{max}$	$[\bar{R}, 7/6\bar{R}]$
$RO2 j$ -prpt, $G = K_3 R_{\text{max}}$	$[\bar{R}, 7/6\bar{R}]$	$RO2 j$ -prpt, $G = K_3$, $Rtt R_{max}$?
$RO2 j$ -prpt, $G = tree R_{max}$	$[\bar{R},7/6\bar{R}]$	$RO2 j$ -prpt, $G = tree, Rtt R_{max}$?

Thank you for attention!