The golden ratio and normality in two-machine routing open shop

Polina Agzyamova Ilya Chernykh

Sobolev Institute of Mathematics, Novosibirsk

84th Workshop on Algorithms and Complexity 6.03.2023

The research was supported by Russian Science Foundation grant N 22-71-10015

Open shop problem settings

$Om||C_{max}$:

- Machines $\{M_1, ..., M_m\}$;
- Jobs $\{J_1, \ldots, J_n\}$;
- Each job has to be processed by each machine in arbitrary order;
- Processing times $P = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ \vdots & & & \vdots \\ p_{m1} & p_{m2} & \cdots & p_{mn} \end{pmatrix}$;
- Objective function C_{max} : the makespan.

Open shop problem settings

$Om||C_{\max}|$:

- Machines $\{M_1, ..., M_m\}$;
- Jobs $\{J_1, ..., J_n\}$;
- Each job has to be processed by each machine in arbitrary order;
- Processing times $P = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ \vdots & & \vdots \\ p_{m1} & p_{m2} & \cdots & p_{mn} \end{pmatrix}$;
- Objective function C_{max} : the makespan.

Short review

- $O2||C_{max}$ is solvable in O(n) [Gonzalez, Sahni 1976];
- $O3||C_{max}$ is NP-hard (but is it strongly NP-hard?) [Gonzalez, Sahni 1976];
- $O||C_{\text{max}}$ is strongly NP-hard, can't be approximated better that $\frac{5}{4}$ [Williamson *et al* 1997].

A special case

Proportionate setting

Restriction on processing times:
$$p_{ij} = p_j$$
, $P = \begin{pmatrix} p_1 & p_2 & \cdots & p_n \\ \vdots & & \vdots \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$

Commonly used notation: prpt (e.g., $Om|prpt|C_{max}$).

A special case

Proportionate setting

Restriction on processing times:
$$p_{ij} = p_j$$
, $P = \begin{pmatrix} p_1 & p_2 & \cdots & p_n \\ \vdots & & \vdots \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$

Commonly used notation: prpt (e.g., $Om|prpt|C_{max}$). Better notation (suggested by [Sevastyanov, 2019]): j-prpt m-prpt

$$P = \begin{pmatrix} p_1 & p_2 & \cdots & p_n \\ \vdots & \vdots & & \vdots \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$$

$$j\text{-prpt}$$

$$P = \begin{pmatrix} p_1 & \cdots & p_1 \\ p_2 & \cdots & p_2 \\ \vdots & & \vdots \\ p_m & \cdots & p_m \end{pmatrix}$$

$$m\text{-prpt}$$

A special case

Proportionate setting

Restriction on processing times:
$$p_{ij} = p_j$$
, $P = \begin{pmatrix} p_1 & p_2 & \cdots & p_n \\ \vdots & & \vdots \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$

Commonly used notation: prpt (e.g., $Om|prpt|C_{max}$). Better notation (suggested by [Sevastyanov, 2019]): j-prpt m-prpt

$$P = \begin{pmatrix} p_1 & p_2 & \cdots & p_n \\ \vdots & \vdots & & \vdots \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$$

$$j\text{-prpt}$$

$$P = \begin{pmatrix} p_1 & \cdots & p_1 \\ p_2 & \cdots & p_2 \\ \vdots & & \vdots \\ p_m & \cdots & p_m \end{pmatrix}$$

$$m\text{-prpt}$$

- $O3|j\text{-}prpt|C_{max}$ is NP-hard [Lui, Bulfin 1987];
- O3|j- $prpt|C_{max}$ is pseudopolynomially solvable [Sevastyanov 2019].

Consider the following new restriction: rows (and columns) of P are proportional.

Consider the following new restriction: rows (and columns) of P are proportional.

Suggested title: proportional processing times.

Suggested notation: $\operatorname{rank} P = 1$.

Consider the following new restriction: rows (and columns) of P are proportional.

Suggested title: proportional processing times.

Suggested notation: $\operatorname{rank} P = 1$.

Consider the following new restriction: rows (and columns) of P are proportional.

Suggested title: proportional processing times.

Suggested notation: $\operatorname{rank} P = 1$.

	J_1	J_2	 J_n	
M_1	p_{11}	p_{21}	 p_{n1}	
:			:	
M_m	p_{1m}	p_{2m}	 p_{nm}	

	J_1	J_2	 J_n	Σ
M_1	p_{11}	p_{21}	 p_{n1}	ℓ_1
:			:	
M_m	p_{1m}	p_{2m}	 p_{nm}	ℓ_2

	J_1	J_2	 J_n	Σ
M_1	p ₁₁	p ₂₁	 p_{n1}	ℓ_1
:			:	
M_m	p_{1m}	p_{2m}	 p_{nm}	ℓ_2
Σ	d_1	d_2	 d_n	

	J_1	J_2	 J_n	Σ
M_1	p_{11}	p_{21}	 p_{n1}	ℓ_1
:			:	
M_m	p_{1m}	p_{2m}	 p_{nm}	ℓ_2
Σ	d_1	d_2	 d_n	

Lower bound on the makespan

$$C^*_{\mathsf{max}} \geqslant \bar{C} \doteq \max_{i,j} \{\ell_i, d_j\} = \max\{\ell_{\mathsf{max}}, d_{\mathsf{max}}\}.$$

Lower bound on the makespan

$$C^*_{\mathsf{max}} \geqslant ar{C} \doteq \max_{i,j} \{\ell_i, d_j\} = \max\{\ell_{\mathsf{max}}, d_{\mathsf{max}}\}.$$

Definition

- A feasible schedule S is normal, if $C_{\text{max}}(S) = \bar{C}$. Instances admitting construction of a normal schedule a also called normal.
- Abnormality of instance I is $\alpha(I) = \frac{C_{\max}^*(I)}{\bar{C}(I)}$.
- ullet If ${\cal K}$ is a set of instances,

$$\alpha(\mathcal{K}) = \sup_{I \in \mathcal{K}} \alpha(I).$$

Review

Notation

- \mathcal{I}_m is the class of non-trivial instances or $Om||C_{max}$.
- $\mathcal{I}_m(\mathbb{P}) = \{I \in \mathcal{I}_m | \mathbb{P}\}$, where \mathbb{P} some property/properties.

Review

Notation

- \mathcal{I}_m is the class of non-trivial instancesfor $Om||C_{\mathsf{max}}|$.
- $\mathcal{I}_m(\mathbb{P}) = \{I \in \mathcal{I}_m | \mathbb{P}\}, \text{ where } \mathbb{P} \text{some property/properties.}$

Examples of normal classes of instances

- \$\mathcal{I}_2\$ [Gonzalez, Sahni 1976]
- $\mathcal{I}_3(\ell_{\sf max}\geqslant 7p_{\sf max})$ [Sevastyanov 1996]
- $\mathcal{I}_m(\ell_1\geqslant \max_{i=2,...,m}\ell_i+mp_{\mathsf{max}})$ [Sevastyanov, Ch 1996]
- $\mathcal{I}_3(\ell_1 \geqslant \ell_2 \geqslant \ell_3 + 2p_{\sf max})$ [Kononov *et al* 1999]
- $\mathcal{I}_3(\ell_{\sf max}\geqslant 3p_{\sf max}, \nu=2)$ [Kashirskikh *et al* 2001]
- $\mathcal{I}_m(j\text{-prpt}, \ell_{\mathsf{max}} \leqslant (m-1)p_{\mathsf{max}})$ [Sevastyanov 2019]
- $\mathcal{I}_3(j\text{-prpt}, \ell_{\mathsf{max}} \leq 2.5 p_{\mathsf{max}})$ [Sevastyanov 2019]
-

Abnormality

- $\alpha(\mathcal{I}_2) = 1$ [Gonzalez, Sahni 1976]
- $\alpha(\mathcal{I}_3) = \frac{4}{3}$ [Sevastyanov, Ch 1998]
- $\alpha(\mathcal{I}_3(\nu=2)) = \frac{5}{4}$ [Lisitsyna, 2008]
- $\alpha(\mathcal{I}_3(j\text{-prpt})) = \frac{10}{9}$ [Sevastyanov 2019]
- $\alpha(\mathcal{I}_3(\text{superoverloaded})) = \frac{7}{6}$ [Ch, Pyatkin 2021]
- $\alpha(\mathcal{I}_m(\Delta \leqslant 2\bar{C})) = 1$ [Sevastyanov, Ch]
- $\alpha(\mathcal{I}_m) < 2$ [dense schedules]
- ...

Routing open shop

Notation

- \bullet The problem: $ROm||R_{\sf max}$ or $ROm|G=X|R_{\sf max}$
- ullet Class of instances of $\mathit{ROm}||\mathit{R}_{\max} \colon \mathcal{I}_\mathit{m}^\mathit{R}$

Routing open shop

Notation

- The problem: $ROm||R_{max}$ or $ROm|G = X|R_{max}$
- ullet Class of instances of $\mathit{ROm}||\mathit{R}_{\mathsf{max}}:\mathcal{I}_{\mathit{m}}^{\mathit{R}}$
- dist(u, v) machine travel time between u and v,
- $\bullet \ d_{\mathsf{max}}(v) = \max_{J_j \in \mathcal{J}(v)} d_j \mathsf{maximum job \ duration \ in} \ v,$
- T^* optimal route weight G.

Routing open shop

Notation

- The problem: $ROm||R_{max}$ or $ROm|G = X|R_{max}$
- Class of instances of $ROm||R_{\max}: \mathcal{I}_m^R$
- dist(u, v) machine travel time between u and v,
- $d_{\mathsf{max}}(v) = \max_{J_j \in \mathcal{J}(v)} d_j$ maximum job duration in v,
- T^* optimal route weight G.

Standard lower bound for $ROm||R_{max}|$

$$ar{R} = \max \left\{ \ell_{\mathsf{max}} + T^*, \max_{v \in V} \left(d_{\mathsf{max}}(v) + 2 \mathrm{dist}(v_0, v) \right) \right\}$$

Review

- $RO1||R_{max}|$ is equivalent to the metric TSP;
- $ROm|G = K_1|R_{max}$ is equivalent to $Om||C_{max}$;
- $RO2|G = K_2|R_{\mathsf{max}}$ is \mathbb{NP} -hard [Averbakh *et al* 2006]
- For $RO2|G = K_2|R_{\text{max}}$ FPTAS exists [Kononov 2012]
- $RO2|j\text{-}prpt, G = K_2|R_{\mathsf{max}}$ is $\mathbb{NP}\text{-}\mathsf{hard}$ [Pyatkin, Ch 2022]
- $\alpha(\mathcal{I}_{2}^{R}(G = K_{2})) = \frac{6}{5}$ [Averbakh *et al* 2005]
- $\alpha(\mathcal{I}_2^R(G = K_3)) = \frac{6}{5}$ [Ch, Lgotina 2016]
- $\alpha(\mathcal{I}_2^R(G=tree)) = \frac{6}{5}$ [Ch, Krivonogova 2019]
- $\alpha(\mathcal{I}_2^R(j\text{-prpt},G=K_3))=\frac{7}{6}$ [Pyatkin, Ch 2022]
- $\alpha(\mathcal{I}_2^R(j\text{-prpt}, G = tree)) = \frac{7}{6}$ [Shmyrina 2022]

The object of investigation

$$RO2|\operatorname{rank} P=1, G=K_2|R_{\mathsf{max}}.$$

$$RO2|\operatorname{rank} P = 1, G = K_3|R_{\mathsf{max}}.$$

Processing times:
$$P = \begin{pmatrix} a_1 & \dots & a_n \\ b_1 & \dots & b_n \end{pmatrix} = \begin{pmatrix} kp_1 & \dots & kp_n \\ p_1 & \dots & p_n \end{pmatrix}$$
, without loss of generality $k \geqslant 1$.

The object of investigation

$$RO2|\operatorname{rank} P = 1, G = K_2|R_{\mathsf{max}}.$$

$$RO2|\operatorname{rank} P=1, G=K_3|R_{\mathsf{max}}.$$

Processing times: $P = \begin{pmatrix} a_1 & \dots & a_n \\ b_1 & \dots & b_n \end{pmatrix} = \begin{pmatrix} kp_1 & \dots & kp_n \\ p_1 & \dots & p_n \end{pmatrix}$, without loss of generality $k \geqslant 1$.

Questions:

- Which values of k guarantee normality?
- **3** Abnormality $\alpha(\mathcal{I}_2^R(\operatorname{rank} P=1,G=K_2))$ as function of k.
- **3** Abnormality $\alpha(\mathcal{I}_2^R(\operatorname{rank} P=1,G=K_3))$ as function of k.

The boundary on normality

Lemma 1

Let $I \in \mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ is an instance with $k \geqslant \Phi$, where Φ is the golden ratio. When I is normal.

The boundary on normality

Lemma 1

Let $I \in \mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ is an instance with $k \geqslant \Phi$, where Φ is the golden ratio. When I is normal.

 Φ — positive root of $x^2 - x = 1$;

$$\Phi = \frac{\sqrt{5}+1}{2} \approx 1,618...$$

$$k \geqslant \Phi \Rightarrow k^2 - k \geqslant 1$$
,

$$k \in [1, \Phi) \Rightarrow k^2 - k < 1.$$

The bounary is tight

Lemma 1

Let $I \in \mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ is an instance with $k \geqslant \Phi$, where Φ is the golden ratio. When I is normal.

Lemma 2

 $\forall k \in [1, \Phi)$ class $\mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ contains an instance with proportionality factor k, which is not normal.

Abnormality

Lemma 1

Let $I \in \mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ is an instance with $k \geqslant \Phi$, where Φ is the golden ratio. When I is normal.

Lemma 2

 $\forall k \in [1, \Phi)$ class $\mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ contains an instance with proportionality factor k, which is not normal.

Lemma 3

Let $I \in \mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ be an instance with proportionality factor $k \in [1, \Phi)$. When

$$R_{\max}^*(I) \leqslant \frac{4k^2 + 3k}{5k^2 + 2k - 1}\bar{R}.$$

Conclusion

Theorem 1

$$\alpha(\mathcal{I}_{2}^{R}(\operatorname{rank} P = 1, G = K_{2})) = F(k) = \begin{cases} \frac{4k^{2} + 3k}{5k^{2} + 2k - 1}, & k \in [1, \Phi), \\ 1, & k \geqslant \Phi. \end{cases}$$

For each $I \in \mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ a feasible schedule with makespan $\leqslant F(k)\bar{R}$ can be built in linear time.

Proof

Straightforward from Lemmas 1,2,3.

Conclusion

Theorem 1

$$\alpha(\mathcal{I}_{2}^{R}(\operatorname{rank} P = 1, G = K_{2})) = F(k) = \begin{cases} \frac{4k^{2} + 3k}{5k^{2} + 2k - 1}, & k \in [1, \Phi), \\ 1, & k \geqslant \Phi. \end{cases}$$

For each $I \in \mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ a feasible schedule with makespan $\leqslant F(k)\bar{R}$ can be built in linear time.

Conclusion

Theorem 2

$$\alpha(\mathcal{I}_{2}^{R}(\operatorname{rank} P = 1, G = K_{3})) = F(k) = \begin{cases} \frac{4k^{2}+3k}{5k^{2}+2k-1}, & k \in [1, \Phi), \\ 1, & k \geqslant \Phi. \end{cases}$$

For each $I \in \mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_3)$ a feasible schedule with makespan $\leqslant F(k)\bar{R}$ can be built in linear time.

Open questions and plans

$$F(k) = \begin{cases} \frac{4k^2 + 3k}{5k^2 + 2k - 1}, & k \in [1, \Phi), \\ 1, & k \geqslant \Phi. \end{cases}$$

- **1** Does similar result hold for $G = K_4$, G = tree, G = cycle, etc?
- ② How does algorithmic complexity of the routing open shop on class $\mathcal{I}_2^R(\operatorname{rank} P=1,G=K_2)$ depend on k:
 - k = 1: NP-hard problem RO2|j-prpt, $G = K_2|R_{max}$,
 - $k \geqslant \Phi$: solvable in linear time,
 - $k \in (1, \Phi)$: ???
- Investigate $O3|\operatorname{rank} P=1|C_{\mathsf{max}}$ and other shop scheduling problems with $\operatorname{rank} P=1$.

Thank you for your attention!

Thanks!

Thank you for your attention!

Thanks!

Questions?

The idea of proof for $G = K_2$

$$RO2|\operatorname{rank} P = 1, G = K_2|R_{\mathsf{max}}.$$

Processing times: $P = \begin{pmatrix} a_1 & \dots & a_n \\ b_1 & \dots & b_n \end{pmatrix} = \begin{pmatrix} kp_1 & \dots & kp_n \\ p_1 & \dots & p_n \end{pmatrix}$, without loss of generality $k \geqslant 1$.

$$ar{R} = \max\{\ell_1 + 2\tau, d_{\max}(v_0), d_{\max}(v_1) + 2\tau\}.$$

The idea of proof for $G = K_2$

$$RO2|\operatorname{rank} P=1, G=K_2|R_{\mathsf{max}}.$$

Processing times: $P = \begin{pmatrix} a_1 & \dots & a_n \\ b_1 & \dots & b_n \end{pmatrix} = \begin{pmatrix} kp_1 & \dots & kp_n \\ p_1 & \dots & p_n \end{pmatrix}$, without loss of generality $k \geqslant 1$.

$$\bar{R} = \max\{\ell_1 + 2\tau, d_{\max}(v_0), d_{\max}(v_1) + 2\tau\}.$$

The approach:

- Preprocessing (instance reduction preserving \bar{R})
- Investigation of the simplified (reduced) instance

Preprocessing

- 1 Job aggregation (or grouping) preserving \bar{R} :
 - Grouping of jobs only from the same node v is allowed;
 - \bar{R} is preserved, if total duration of jobs aggregated doesn't exceed $\bar{R} 2 \mathrm{dist}(v_0, v)$;
 - Using $\sum d_j = \ell_1 + \ell_2 \leqslant 2(\bar{R} T^*)$ it is possible to group jobs in at most 3 groups per node;
 - Grouping doesn't violate machine loads, mode loads and proportionality factor k;
 - Any feasible schedule for the reduced instance can be treated as feasible schedule with same makespan for the initial instance.
- 2 Overloaded and superoverloaded nodes:
 - Node v is overloaded, if its load (total duration of jobs) is greater than $\bar{R} 2 \operatorname{dist}(v_0, v)$;
 - Any two-machine instance contains at most one overloaded node;
 - An instance is irreducible, if any possible job aggregation enlarges \bar{R} ;
 - A node in a irreducible instance, containing three jobs, is superoverloaded.

Preprocessing

- 2 Overloaded and superoverloaded nodes:
 - Node v is overloaded, if its load (total duration of jobs) is greater than $\bar{R} 2 \operatorname{dist}(v_0, v)$;
 - Any two-machine instance contains at most one overloaded node;
 - An instance is irreducible, if any possible job aggregation enlarges \bar{R} ;
 - A node in a irreducible instance, containing three jobs, is superoverloaded.
- 3 Some known facts:
 - Any instance of $RO2|G = K_2|R_{max}$ without overloaded nodes is normal [trivial]
 - Any instance of $RO2|G = K_2|R_{max}$ with a superoverloaded node is normal [Ch, Pyatkin 2020]
 - Any instance of $RO2||R_{\rm max}$ with overloaded depot is normal [Ch 2021]

Preprocessing

- 3 Some known facts:
 - Any instance of $RO2|G=K_2|R_{\max}$ without overloaded nodes is normal [trivial]
 - Any instance of $RO2|G = K_2|R_{max}$ with a superoverloaded node is normal [Ch, Pyatkin 2020]
 - Any instance of $RO2||R_{\rm max}$ with overloaded depot is normal [Ch 2021]
- 4 It is sufficient to consider instances of the following type:

Node v_0 contains a single job J_1 , node v_1 is overloaded and contains jobs J_2 and J_3 .

Normality

Lemma 1

Let $I \in \mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ is an instance with $k \geqslant \Phi$, where Φ is the golden ratio. When I is normal.

Proof

Node v_0 contains a single job J_1 , node v_1 is overloaded and contains jobs J_2 and J_3 .

Consider an irreducible instance with processing times

$$P = \left(\begin{array}{c|c} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array}\right) = \left(\begin{array}{c|c} kp_1 & kp_2 & kp_3 \\ p_1 & p_2 & p_3 \end{array}\right).$$

Without loss of generality assume $p_2 \geqslant p_3$.

$$R_1 = R_{\text{max}}(S_1) = \frac{b_2}{a_2} + \frac{a_3}{a_3} + 2\tau = (1+k)\frac{p_2}{p_2} + k\frac{p_3}{p_3} + 2\tau.$$

$$R_1 = R_{\text{max}}(S_1) = \frac{b_2}{a_2} + \frac{a_3}{a_3} + 2\tau = (1+k)\frac{p_2}{p_2} + k\frac{p_3}{p_3} + 2\tau.$$

$$R_1 = R_{\text{max}}(S_1) = \frac{b_2}{a_2} + \frac{a_3}{a_3} + 2\tau = (1+k)\frac{p_2}{p_2} + k\frac{p_3}{p_3} + 2\tau.$$

$$R_1 = R_{\text{max}}(S_1) = \frac{b_2}{a_2} + \frac{a_3}{a_3} + 2\tau = (1+k)\frac{p_2}{p_2} + k\frac{p_3}{p_3} + 2\tau.$$

$$R_1 = R_{\text{max}}(S_1) = \frac{b_2}{a_2} + \frac{a_3}{a_3} + 2\tau = (1+k)\frac{p_2}{p_2} + k\frac{p_3}{p_3} + 2\tau.$$

$$R_1 = R_{\text{max}}(S_1) = \frac{b_2}{a_2} + \frac{a_3}{a_3} + 2\tau = (1+k)\frac{p_2}{p_2} + k\frac{p_3}{p_3} + 2\tau.$$

Consider schedule S_1 :

$$R_1 = R_{\text{max}}(S_1) = \frac{b_2}{a_2} + \frac{a_2}{a_3} + 2\tau = (1+k)\frac{p_2}{a_3} + k\frac{p_3}{a_3} + 2\tau.$$

$$R_2 = R_{\text{max}}(S_2) = a_1 + a_3 + b_3 + b_1 + 2\tau = (1+k)p_1 + (1+k)p_3 + 2\tau.$$

Let's prove, that at least one of schedules S_1 and S_2 is normal (for any instance complying with Lemma), or

$$\min\{R_1, R_2\} \leqslant \bar{R}$$
.

Note that $\forall \lambda \in [0,1]$

$$\min\{R_1, R_2\} \leqslant \lambda R_1 + (1 - \lambda)R_2.$$

On the other hand,

$$LB_1 = \ell_1 + 2\tau = k(p_1 + p_2 + p_3) + 2\tau \leqslant \bar{R},$$

 $LB_2 = k(p_1 + 2p_3) + 2\tau \leqslant LB_1 \leqslant \bar{R},$

therefore $\forall \mu \in [0,1] \; \mu LB_1 + (1-\mu)LB_2 \leqslant \bar{R}$. It is sufficient to find such $\lambda, \mu \in [0,1]$, that

$$\lambda R_1 + (1 - \lambda)R_2 \leqslant \mu LB_1 + (1 - \mu)LB_2.$$

Proof (finished)

$$\begin{split} R_1 &= (1+k)p_2 + kp_3 + 2\tau, \\ R_2 &= (1+k)(p_1+p_3) + 2\tau, \\ LB_1 &= k(p_1+p_2+p_3) + 2\tau, \\ LB_2 &= k(p_1+2p_3) + 2\tau. \end{split}$$
 Consider $\lambda = \frac{k-1}{k}, \ \mu = 1 - \frac{1}{k^2}.$
$$\lambda R_1 + (1-\lambda)R_2 = \frac{k+1}{k}p_1 + \frac{k^2-1}{k}p_2 + \frac{k^2+1}{k}p_3 + 2\tau, \\ \mu LB_1 + (1-\mu)LB_2 &= kp_1 + \frac{k^2-1}{k}p_2 + \frac{k^2+1}{k}p_3 + 2\tau, \\ \lambda R_1 + (1-\lambda)R_2 &\leq \mu LB_1 + (1-\mu)LB_2 \iff 1 + \frac{1}{k} \leqslant k \iff k^2 - k \geqslant 1. \end{split}$$

The golden ratio: tight normality boundary

Lemma 2

 $\forall k \in [1, \Phi)$ class $\mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ contains an instance with proportionality factor k, which is not normal.

Proof

Consider instance $p_1 = k$, $p_2 = p_3 = k + 1$, $2\tau = 2k^2 - 1$.

For this instance we have

$$\bar{R} = k(p_1 + p_2 + p_3) + 2\tau = 5k^2 + 2k - 1 < 4k^2 + 3k.$$

Assume there exists a feasible schedule S with makespan

$$R_{\text{max}}(S) < 4k^2 + 3k = p_1 + p_2 + p_3 + 4\tau.$$

Note that each machine travels once from v_0 to v_1 and back in S. Without loss of generality M_1 performs operations in order $a_1 \rightarrow a_2 \rightarrow a_3$.

$$p_1 = k, p_2 = p_3 = k + 1, 2\tau = 2k^2 - 1.$$

$$p_1 = k, p_2 = p_3 = k + 1, 2\tau = 2k^2 - 1.$$

$$R_{\text{max}}(S) \geqslant b_2 + a_2 + a_3 + 2\tau = k + 1 + k(k+1) + k(k+1) + 2k_2 - 1 = 4k^2 + 3k.$$

$$p_1 = k, p_2 = p_3 = k + 1, 2\tau = 2k^2 - 1.$$

$$R_{\text{max}}(S) \geqslant a_1 + a_2 + b_2 + b_1 + 2\tau = (k+1)k + (k+1)^2 + 2k_2 - 1 = 4k^2 + 3k.$$

$$p_1 = k, p_2 = p_3 = k + 1, 2\tau = 2k^2 - 1.$$

$$R_{\text{max}}(S) \geqslant k + k \cdot (3k + 2) + 2k^2 - 1 = 5k^2 + 3k - 1 \geqslant 4k^2 + 3k.$$

$$p_1 = k, p_2 = p_3 = k + 1, 2\tau = 2k^2 - 1.$$

$$R_{\text{max}}(S) \geqslant a_1 + b_1 + b_3 + a_3 + 2\tau = k^2 + k + k + 1 + k(k+1) + 2k^2 - 1 = 4k^2 + 3k$$

Abnormality

Lemma 3

Let $I \in \mathcal{I}_2^R(\operatorname{rank} P = 1, G = K_2)$ be an instance with proportionality factor $k \in [1, \Phi)$. When

$$R_{\max}^*(I) \leqslant \frac{4k^2 + 3k}{5k^2 + 2k - 1}\bar{R}.$$

Proof

Consider the following three schedules:

$$R_1 = R_{\text{max}}(S_1) = \frac{b_2}{a_2} + \frac{a_3}{a_3} + 2\tau = (1+k)\frac{p_2}{p_2} + \frac{kp_3}{p_3} + 2\tau.$$

$$R_2 = R_{\text{max}}(S_2) = a_1 + a_3 + b_3 + b_1 + 2\tau = (1+k)p_1 + (1+k)p_3 + 2\tau.$$

$$R_1 = (1+k)p_2 + kp_3 + 2\tau, R_2 = (1+k)p_1 + (1+k)p_3 + 2\tau.$$

$$R_1 = (1+k)p_2 + kp_3 + 2\tau, R_2 = (1+k)p_1 + (1+k)p_3 + 2\tau.$$

Case 1:

$$R_3 = R_{\text{max}}(S_3) = a_1 + b_1 + b_3 + 2\tau = (k+1)p_1 + p_3 + 2\tau,$$

$$R_1 + R_3 = (k+1)(p_1 + p_2 + p_3) + 4\tau = \ell_1 + \ell_2 + 4\tau \leqslant 2\bar{R}.$$

$$R_1 = (1+k)p_2 + kp_3 + 2\tau, R_2 = (1+k)p_1 + (1+k)p_3 + 2\tau.$$

Case 2:

$$R_3 = R_{\text{max}}(S_3) = b_2 + b_1 + b_3 + 4\tau = p_1 + \frac{p_2}{p_2} + \frac{p_3}{p_3} + 4\tau.$$

Proof, Case 2

$$R_1 = (1+k)p_2 + kp_3 + 2\tau,$$

$$R_2 = (1+k)p_1 + (1+k)p_3 + 2\tau,$$

$$R_3 = R_{\text{max}}(S_3) = b_2 + b_1 + b_3 + 4\tau = p_1 + p_2 + p_3 + 4\tau.$$

Let's prove that $\min\{R_1,R_2,R_3\}\leqslant \frac{4k^2+3k}{5k^2+2k-1}\bar{R}.$

Proof, Case 2

$$R_1 = (1+k)p_2 + kp_3 + 2\tau,$$

$$R_2 = (1+k)p_1 + (1+k)p_3 + 2\tau,$$

$$R_3 = R_{\text{max}}(S_3) = b_2 + b_1 + b_3 + 4\tau = p_1 + p_2 + p_3 + 4\tau.$$

Let's prove that $\min\{R_1, R_2, R_3\} \leqslant \frac{4k^2 + 3k}{5k^2 + 2k - 1}\bar{R}$.

$$LB_1 = k(p_1 + p_2 + p_3) + 2\tau, LB_2 = k(p_1 + 2p_3) + 2\tau.$$

It is sufficient to find such $\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2$, that

- $(\lambda_1 + \lambda_2 + \lambda_3)(4k^2 + 3k) \leqslant (\mu_1 + \mu_2)(5k^2 + 2k 1).$

Proof, Case 2

$$R_1 = (1+k)p_2 + kp_3 + 2\tau,$$

$$R_2 = (1+k)p_1 + (1+k)p_3 + 2\tau,$$

$$R_3 = R_{\text{max}}(S_3) = b_2 + b_1 + b_3 + 4\tau = p_1 + p_2 + p_3 + 4\tau.$$

Let's prove that $\min\{R_1, R_2, R_3\} \leqslant \frac{4k^2 + 3k}{5k^2 + 2k - 1}\bar{R}$.

$$LB_1 = k(p_1 + p_2 + p_3) + 2\tau$$
, $LB_2 = k(p_1 + 2p_3) + 2\tau$.

It is sufficient to find such $\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2$, that

$$(\lambda_1 + \lambda_2 + \lambda_3)(4k^2 + 3k) \leqslant (\mu_1 + \mu_2)(5k^2 + 2k - 1).$$

$$\lambda_1 = \frac{2k^2 + k - 1}{k^2}, \ \lambda_2 = \frac{4k^2 - 1}{k^2}, \ \lambda_3 = \frac{-k^2 + k + 1}{k^2},$$

$$\mu_1 = \lambda_2 + 2\lambda_3 = \frac{2k^2 + 2k + 1}{k^2}, \ \mu_2 = \lambda_1 = \frac{2k^2 + k - 1}{k^2}.$$

