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The lower bound and instances’ properties

Let
F(x) = min

be some minimization problem, LB < F* is the lower bound on the
optimuim.
Interesting properties of instances in terms of LB:

@ Polynomially solvable subcases, for which F* = LB;

@ Approxination algorithms with ratio based on LB:
F(xa) < pLB < pF™;

@ Optima localization.
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Optima localization

Definition

Tight optima localization interval for a class of instances Z of some
minimization problem respective to some lower bound LB is the tightest
possible interval of form

OL[_B(I) = [LB7 p*LB],

guaranteed to contain optima of all instances from Z.
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Optima localization

Definition

Tight optima localization interval for a class of instances Z of some
minimization problem respective to some lower bound LB is the tightest
possible interval of form

OL[_B(I) = [LB, p*LB],

guaranteed to contain optima of all instances from Z.

OPT(/)

*=supafl) =su .
p /eg () Ieg LB(1)

Motivation
@ Quality of lower bound LB.

© Upper bound on the approximation ratio for algorithms, based on
LB.

© Potential for designing approximation algorithms with “best possible”
approximation ratio (with respect to LB).
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Shop scheduling problems

“General” problem settings

@ A set of jobs 7 ={Jy,...,n},
@ a set of machines M = {M,,..., M},

@ each machine M; performs single operation Oj; for each job J;,
processing times are given in advance

P11 P21 P31 ... P
P12 P22 P32 ... Pn2

P = . . . . ,
Pim P2m P3m --- Pnm

@ operations of the same job/machine cannot be performed
simultaneously.
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Shop scheduling problems

“General” problem settings

@ A set of jobs 7 ={Jy,...,n},
@ a set of machines M = {M,,..., M},

@ each machine M; performs single operation Oj; for each job J;,
processing times are given in advance

P11 P21 P31 ... P
P12 P22 P32 ... Pn2

P = . . . . ,
Pim P2m P3m --- Pnm

@ operations of the same job/machine cannot be performed
simultaneously.

Standard lower bound on the makespan Cyay:

SLB = max{/;,d;} = max ji's ji
12 { i} iy ;PJ ;PJ
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Open shop problem

Open shop with m machines is denoted as Om|| C,ax. We denote the set
of instances as Z,,.
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Open shop problem

Open shop with m machines is denoted as Om|| C,ax. We denote the set
of instances as Z,,.

v

Some known facts
@ 0Ls;5(Z2) = [SLB, SLB] [Gonzalez, Sahni 1976],
@ 0L 5(Zs) = [SLB, §SLB] [Sevastyanov, Ch 1998].
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Open shop problem

Open shop with m machines is denoted as Om|| C,ax. We denote the set
of instances as Z,,.

Some known facts

@ 0Ls;5(Z2) = [SLB, SLB] [Gonzalez, Sahni 1976],
@ 0L 5(Zs) = [SLB, §SLB] [Sevastyanov, Ch 1998].

Critical instance for m = 3

120 M|
102 ,SLB = 3. :- |
1 O O M3 | | | :
1 2 3 4

Cmax
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Early schedules

Definition

Schedule S is early, if no operation can be started earlier than in S,
without the violation of feasibility and precedence induced by S.
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Early schedules

Definition

Schedule S is early, if no operation can be started earlier than in S,
without the violation of feasibility and precedence induced by S.

v I 0163
v o

The set of all possible early schedules contains an optimal one. An early
schedule can be described with linear ordering of operations for each job
and each machine.
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Schedule’s templates

Definition

A schedule’s template for a problem with m machines and n job is a
partial order of operations, such that operations of each job and each
machine are linearly ordered.
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Schedule’s templates

Definition

A schedule’s template for a problem with m machines and n job is a
partial order of operations, such that operations of each job and each
machine are linearly ordered.

A combination of a template and an instance defines a single early
schedule. Its makespan equals to the weight of a critical path.
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Job aggregation

Job aggregation of a subset of jobs K of instance / is the following
transformation | — [’:

T =T\ KU{k},

Vi:l,...,m pKi: ij,'.
JieK

llya Chernykh Computer-aided optima localization 8/30



Job aggregation

Job aggregation of a subset of jobs K of instance / is the following

transformation [ — [”;

T =T\ KU{Jk},

Vi=1,...,m pki= ij,-.

Jiek

P11 P21 ... Pj-11 Pj1 Pr1 Pryi Pn1

pi2 P22 ... Pi-12 Pj2 Pr2 Pri12 Pn2

pPp—=1| P13 P23 ... PpPj-13 Pj3 Pr3  Pr+13 Pn3
Pim P2m ... Pji—1,m Pjm Prm  Pr+1,m Pnm
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Job aggregation

Job aggregation of a subset of jobs K of instance / is the following
transformation | — /”:

T =T\ KU{Jk},

Vi=1l...,m pki= ij,-.

JieK

pi1 P21 ... Pj-11 S Pr+11 .- Pnl

P12 P22 ... Pj-12 cee Pr+12 ---  Pn2

pPp=| P13 P23 ... Pj-13 . Pr+13 .- Pn3
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Job aggregation

Job aggregation of a subset of jobs K of instance / is the following
transformation | — [’:

T =T\ KU{Jk},

Vi=1,....,m pki= ij,-.

Jiek
r
pir P21 .- Pj-11 Zk:j Pk1 | Pr+11 oo+ Pnl
P12 p22 ... Pj-12 Z’};:j P2 | Pr+12 ---  Pn2
p—|P3s P23 o P13 |Dp_jPk3 | Pr13 oo Pu3
: : . :
Pim P2m - Pj—1,m Zk:j Pkm | Pr+1,m --- Pnm
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Job aggregation

Job aggregation of a subset of jobs K of instance / is the following
transformation | — [’:

T =T\ KU{Jk},

Vi=1,....,m pki= ij,-.

Jiek
r
pir P21 .- Pj-11 Zk:j Pk1 | Pr+11 oo+ Pnl
P12 p22 ... Pj-12 Z’};:j P2 | Pr+12 ---  Pn2
p—|P3s P23 o P13 |Dp_jPk3 | Pr13 oo Pu3
: : . :
Pim P2m - Pj—1,m Zk:j Pkm | Pr+1,m --- Pnm

SLB(I') = SLB(I) <= > d; < SLB(!

Jiek
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Aggregation theorem

Any instance / of an m-machine problem can be transformed by a series
of aggregations into instance /I’ such that SLB(/") = SLB(/) and I’
contains at most 2m — 1 jobs.

llya Chernykh Computer-aided optima localization 9/30



Aggregation theorem

Theorem

Any instance / of an m-machine problem can be transformed by a series
of aggregations into instance /I’ such that SLB(/") = SLB(/) and I’
contains at most 2m — 1 jobs.

Proof

It is sufficient to show that we can always group the vaslues di, ..., d, in
at most 2m — 1 groups such that total value of each group doesn't

exceed SLB.
Zd = Ze mSLB.

While n > 2m: consider m pairs of values d;. The sum of at least one of
those pairs is < SLB.
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Example of the usage: classical result for O2|| Cnax

Gonzalez-Sahni theorem (1976)

For the problem O2||Cyax the optimal makespan always coincides with
SLB. Such (optimal) schedule can be built in O(n) time.
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For the problem O2||Cyax the optimal makespan always coincides with
SLB. Such (optimal) schedule can be built in O(n) time.

@ Apply job aggregations to / to obtain an instance I’ with at most
three jobs, preserving SLB.
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Gonzalez-Sahni theorem (1976)

For the problem O2||Cyax the optimal makespan always coincides with
SLB. Such (optimal) schedule can be built in O(n) time.

@ Apply job aggregations to / to obtain an instance I’ with at most
three jobs, preserving SLB.

@ Denote operations of the first (second) machine by a; (b;),
j=1,2,3.
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Example of the usage: classical result for O2|| Cnax

Gonzalez-Sahni theorem (1976)

For the problem O2||Cyax the optimal makespan always coincides with
SLB. Such (optimal) schedule can be built in O(n) time.

@ Apply job aggregations to / to obtain an instance I’ with at most
three jobs, preserving SLB.
@ Denote operations of the first (second) machine by a; (b;),
j=1,2,3.
o Consider two cases:
o either Vj =1,2,3a; > b; (equivalently Vj =1,2,3a; < b))
o or we have one false and two true inequalities (equivalently one true
and two false).
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Example of the usage: classical result for O2|| Cnax

o Case I: Vj=1,2,3 a; > b;.
Without loss of generality az = max{a;}.
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Example of the usage: classical result for O2|| Cnax

o Case I: Vj=1,2,3 a; > b;.
Without loss of generality az = max{a;}.

o Construct the schedule with the following template:

a1 @

&—
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Example of the usage: classical result for O2|| Cnax

o Case I: Vj=1,2,3 a; > b;.
Without loss of generality az = max{a;}.

o Construct the schedule with the following template:

a1 @

&—

@ Because of a3 > a» > by and a» + a3 > a» + a1 > by + b», the
makespan doesn’t exceed SLB.
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Example of the usage: classical result for O2|| Cnax

o Case Il: a; < bl, a, > b2, as > b3.
Without loss of generality bz > bs.
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Example of the usage: classical result for O2|| Cnax

o Case Il: a; < bl, a, > bz, as > b3.
Without loss of generality bz > bs.

o Case lla: b3 > a;.

@ Use the following template:

a1 @

® G
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Example of the usage: classical result for O2|| Cnax

o Case Il: a; < bl a, > b2 83 > b3.
Without loss of generality bz > bs.

o Case lla: b3 > a
@ Use the following template:

ai @
& =
@ As soon as a; < bz and a3z > bz > b,, the makespan doesn’t exceed

SLB.
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Example of the usage: classical result for O2|| Cnax

o Case Il: a; < bl, ar > b2, as > b3.
Without loss of generality bz > bs.

@ Case llb: b3 < a;.
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Example of the usage: classical result for O2|| Cnax

o Case Il: a; < bl, ar > bz, as > b3.
Without loss of generality bz > bs.

@ Case llb: b3 < a;.
@ Use the following template:

az a1

=)
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Example of the usage: classical result for O2|| Cnax

o Case Il: a; < bl, ar > bz, as > b3.
Without loss of generality bz > bs.

@ Case llb: b3 < a;.

@ Use the following template:

a2 ai
b
: &)
@ Because of a; > b3 and az > bz > b,, the makespan doesn’t exceed

SLB.
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de Werra's algorithm (1989)

Algorithm
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de Werra's algorithm (1989)

Algorithm

© If Jk|ax + by = C, then the following schedule is optimal:

| . i
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de Werra's algorithm (1989)

Algorithm

© If Jk|ax + by = C, then the following schedule is optimal:

| . i |

© Otherwise: without loss of generality

o Assume a1 + az + a3 = b1 + by + bs,
o if necessary, rename jobs/machines such that a; > b, and b; > as.
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de Werra's algorithm (1989)

Algorithm

© If Jk|ax + by = C, then the following schedule is optimal:

| . i |

© Otherwise: without loss of generality
o Assume a1 + az + a3 = b1 + by + bs,
o if necessary, rename jobs/machines such that a; > b, and b; > as.

© Construct the schedule:
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Review of the “inefficient”” version

a3 = mjax{aj, b} @‘64" S
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Review of the “inefficient”” version
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Review of the “inefficient”” version

_ b @ @—
==
C11:31+32+V

| Cu <t <SLB|
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Review of the “inefficient”” version

az = max{aj, b;} @‘e;v‘ s,
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Review of the “inefficient”” version

a3 = mjax{aj, b} @‘g,?{;@ S

C11=31+32+V \C12_31+b1+b2

Ci1 <t < SLB| —@ s,

—
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Review of the “inefficient”” version

a3 = mjax{aj, b} @‘g,?{'@ S

Cll:al+a2+‘7 \C12—31+b1+b2

Ci1 < SLBl v@ S,

‘@

@@
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Review of the “inefficient”” version

as = max{aj, b}
J

Ci=at+a+b

Cuu < 41 < SLB]

Coy=ar+ a3+ b3

@—@—
~ = L
@ , @ S

\

@

s —@

O—o—
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Review of the “inefficient”” version

_ max{aby o ——
as mjax{aJ i} ‘@,T‘ﬁ@ S
Cu=atathb \C12—31+b1+b2

Ci1 < 1 < SLB] 8|

G =ax+az+ bs

Cio+ Gy =101 +/0, <25LB
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Review of the “inefficient”” version

a3 = max{a;, bj} @‘647‘ S

®—6

C11:31+22+V \C12—31+b1+b2

Ci1 < (1 < SLB| E—@-—@
&=

Gy =a+az3+ b3

Cio+ Gy =101 +/0, <25LB

5
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Review of the “inefficient”” version

a3 = max{a;, bj} @‘347‘ S

®—6

C11:31+22+V \C12—31+b1+b2

Ci1 < (1 < SLB| E—@-—@
&=

Gy =a+az3+ b3

Cio+ Gy =101 +/0, <25LB

5

Cop =ax+ by + b3
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Review of the “inefficient”” version

C11=31+32+V \C12_31+b1+b2

[ <t < SLB| E—@-—@
&=

Co1 = ar + az + bs

S2

Coo = az + by + b3

Cio+ Gy =101 +0, <25LB Cio+ Coo <l + 0, <25LB
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A tree of proof

o Vertices (except sinks) are
templates.

@ Arcs correspond to variants
of critical paths in the
templates they leave.

@ Sinks (terminal vertices)
contain proofs, that at least
one of the schedules, built
according to the templates
belonging to the path from
the root to this sink is good
enough.
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@ It is sufficient to consider instances with at most 2m — 1 jobs.
@ It is sufficient to consider instances with SLB = 1.
© Questions:

o How to choose the next template when branching?
e How to prove that no further branching is necessary?
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@ It is sufficient to consider instances with at most 2m — 1 jobs.
@ It is sufficient to consider instances with SLB = 1.
© Questions:

o How to choose the next template when branching?
e How to prove that no further branching is necessary?

General ideas

@ Treat the branching as splitting of the set of instances. Now each node
corresponds to a subset of instances.

© Find a critical instance in each subset (with maximal makespan for the
subset).

© If the makespan if critical instance is good enough, we have the proof (for
this vertex).

@ Otherwise, choose the template that suits the critical instance the most.
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Example (SLB = 1)

@@ —

06|
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Example (SLB = 1)

@@ —

=0 —6)| "

Ci=a1+ b+ b
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Example (SLB = 1)

B—0—
—~ 00

Ci=a1+ b+ b

31:b2:1
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Example (SLB = 1)

B—0—
—~ 00

Ci=a1+ b+ b

31:b2:1
C a1
b 1

llya Chernykh

Computer-aided optima localization

5

18 /30



Example (SLB = 1)

@—@— S
08|

C1:31+b1ly

31:b2:1

a1

I 2 —

Sx
@@ -@
&~

llya Chernykh Computer-aided optima localization



Example (SLB = 1)

@—@=— S
‘7@0‘@ 1
Ci=a+ bly
31 = b2 =
C—ar ]
— o —
So1
e =
=<
Gy =ax+az+ b3 @&
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Example (SLB = 1)

@—@=— S
‘7@0‘@ 1
Ci=a+ bly
31 = b2 =
C—ar ]
— o —
So1
e =
=<
Gy =ax+az+ b3 @&
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Example (SLB = 1)

Gy =ax+as+bs

@—e2—
—~ 00
C1:31+b7
31:b2:
 — —
[ o sa—
P =
&=
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Example (SLB = 1)

28|
08|

Ci=a1+ b+ b

31:b2:

C—ar ]

— o —

Sx

P =

@ @" Cop=ax+ b+ b3
Gy =apx+as+ bs

ay=by =3,

WIFWIN

32:b3:

18 /30
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Example (SLB = 1)

28|
08|

C]_:31+blly

31:b2—
a1
— o —
Sx
@@ -@
@ @" Cop=ax+ b+ b3
Gy =apx+as+ bs
a=b =3,
1

32:b3:

i
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Example (SLB = 1)

28|
08|

C]_:31+blly
ay = by =
> 2 C by + b
! 22 = az + b2 + b3
Gy =apx+as+ bs @ @
ap = by =

32:b3:

I=HwIN

it
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How to find a critical instance

o Nonnegative variables: processing times (a;, b;) and auxiliary variable
p.

@ Objective: p — max.

@ Subject to:
hh=a+a+a3<1
l=b+by+b3<1
di=a + b <1,
dy =ap+ by < 1,
d3 = az+ b3 < 1,

G= > p(0)=p,
oeP,

Y

)

Ce= > p(0)=p,
O€Py

aj, b, p 2 0.
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Further automation

How to choose the next templete

Possible variants:

© Critical instance — optimal schedule — partial order of the
operations — template.

© Create some pool of instances. Choose the best fitting the critical
instance from the pool.

Optimization

o “Base” templates can be modified with application of permutations
of jobs/machines.

@ Introduce properties of an instance without loss of generality (e.g.,
as = max{aj, b;}).

@ Split Z into subcases (by number of jobs, by total workload, ...)
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Verifying the proof constructed

@ The proof is constructive.
@ We need a verification for each terminal vertex.

@ We could verify by solving the corresponding LP (for terminal
vertices only).

@ Faster approach: for each terminal vertex store an optimal solution
of dual LP!
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The structure of the proof

@ Vertices correspond to
subsets of instances

@ red vertices contain templates

@ arcs, outcoming from red
vertices, correspond to
variants of critical paths in
that templates. Each path is
stored as a linear expression

o terminal (green) vertices
contain proofs
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Algorithm: building the tree of proof

Conjecture: For any instance (with certain restrictions) there exists
schedule S with makespan Cyax(S) < p*SLB.

o Given a set of templates S = {So, ..., Sn}.

o For each template Sy the set P(Sk) of possible critical paths is
described.

@ Root vertex: S := Sy. Current set of paths: Q = 0.
@ For each P € P(S):
0 Q:=QU{P}. 5
© Find a critical instance | = argmax min P(/).
. I PeQ
o If ’ryeig P(I) < p*, Q:= Q\ {P}, continue to the next P, if any.

Otherwise climb up to the previous vertex, continue to the next P.
O Else

@ Find an improving template S € S for the instance T, Go to Step 2.
© |If improving template is not found, STOP, output the critical
instance.

© Done!
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Algorithm: building the tree of proof

Conjecture: For any instance (with certain restrictions) there exists
schedule S with makespan Cyax(S) < p*SLB.
o Given a set of templates S = {So, ..., Sn}.

o For each template Sy the set P(Sk) of possible critical paths is
described.

@ Root vertex: S := Sy. Current set of paths: Q = 0.
@ Step 2 is this one! For each P € P(S):
0 Q:=QU{P}. 5
© Find a critical instance | = argmax min P(/).
. I PeQ
o If ’ryeig P(I) < p*, Q:= Q\ {P}, continue to the next P, if any.

Otherwise climb up to the previous vertex, continue to the next P.
O Else

@ Find an improving template S € S for the instance T, Go to Step 2.
© |If improving template is not found, STOP, output the critical
instance.

© Done!
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Input files: model description

{ IIMII: 2’
IIJ": 3’
"params": O,
"missed_vertexes": "",

"bounds": [
[ "Lmax", "<", "1", "Lmax" ],
[ "Dmax", "<", "1", "Dmax" ]
1,
"expressions": [],
"hypothesis": "1",
"objective_augmentation": "",
"improvement_flag": true,
"Machines": [

[ 1, 2 ]
i
"Jobs": [

[ 1, 2, 3 1]
13
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Input files: template description

{
"base": [
[
"al a2 a3",
"b2 b3 bl",
"al bi",
"b2 a2",
"b3 a3"
]
]
}
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Input files: template description

{ ap — az — as,
"base": [ by — b3 — by,
L a; — bl7
"al a2 a3", by = ap,
"b2 b3 bl", bs — as.
"al bil",
"b2 a2",
"b3 a3"
]
]
}
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Input files: template description

{ ay — a2 — as,
"base": [ b2—>b3—>b1,
L a; — bl7
"al a2 a3", by — a,
"b2 b3 bl", b3_>33'
Ilal b1|l s
Ilb2 a2|l s @‘@"‘

"b3 a3" @ -@
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Input files: template description

{ ay — a2 — as,
"base": [ b2—>b3—>b1,
L a; — bl7
"al a2 a3", by = ap,
"b2 b3 bl", bz — as.
Ilal b1|l s
Ilb2 a2|l s @‘@ o
"b3 a3" @ -@
]
, ] Po: by + ap + as,
Pi:iby+bs+ by
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Output: the tree of proof

10 (01 2)

2 0 0 [L1=1/2 L2=1/2 P_1=1/2 P_2=
1/2 ]

301 (00 4)

4 01 0 [L1=2/3 L2=1/3 P_1=1/3 P_
2=1/3 P_3=1/3 ]

5 01 1 [Li1=1/2 L2=1/2 D3=0 P_2=1

/2 P_3=1/2 1]

(01 2)

0 (0 0 4 )

8 1 0 0 [L1=1/2 L2=1/2 D3=0 P_1=1
/2 P_3=1/2 ]

9 1 0 1 [L1=1/3 L2=2/3 P_1=1/3 P_
2=1/3 P_3=1/3 ]

10 11 (0 0 4 )

11 11 0 [Li=1/2 L2=1/2 D3=0 P_1=1
/2 P_3=1/2 1]

12 111 [Li1=1/2 L2=1/2 P_2=1/2 P_
3=1/2 ]

N o
—
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Output: the tree of proof

1 0 (01 2)

2 0 0 [L1=1/2 L2=1/2 P_1=1/2 P_2=
1/2 ]

301 (00 4 )

4 01 0 [L1=2/3 L2=1/3 P_1=1/3 P_

2=1/3 P_3=1/3 ] So = $(0,0,0)
5 01 1 [Li1=1/2 L2=1/2 D3=0 P_2=1 S51=50,1.2)
/2 P_3=1/2 ] S2 = S00,0,4)
6 1 (01 2)
7 10 (00 4 )

8 1 0 0 [L1=1/2 L2=1/2 D3=0 P_1=1
/2 P_3=1/2 ]

9 1 0 1 [L1=1/3 L2=2/3 P_1=1/3 P_
2=1/3 P_3=1/3 ]

10 11 (0 0 4 )

11 11 0 [Li=1/2 L2=1/2 D3=0 P_1=1
/2 P_3=1/2 1]

12 111 [Li1=1/2 L2=1/2 P_2=1/2 P_
3=1/2 ]
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Output: the tree of proof

10 (01 2)

2 0 0 [L1=1/2 L2=1/2 P_1=1/2 P_2=
1/2 ]

301 (00 4)

4 01 0 [L1=2/3 L2=1/3 P_1=1/3 P_

2=1/3 P_3=1/3 ] So = $(0,0,0)
5 01 1 [Li=1/2 L2=1/2 D3=0 P_2=1 S1=5(0,1,2)
/2 P_3=1/2 ] 52 = 5(0,04)
6 1 (01 2)
7 10 (0 0 4 ) Qoeb
8 1 0 0 [L1=1/2 L2=1/2 D3=0 P_1=1
/2 P_3=1/2 1] gp

o 1 0 1 [L1=1/3 L2=2/3 P_1=1/3 P_
2=1/3 P_3=1/3 ]

10 11 (0 0 4 )

11 1 1 0 [L1=1/2 L2=1/2 D3=0 P_1=1
/2 P_3=1/2 ]

12 1 1 1 [Li=1/2 L2=1/2 P_2=1/2 P_
3=1/2 ]
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Selected results

Problem Optima localization
03| Gnax [SLB,4/3SLB]
O3Jv = 2|Cnax [SLB,5/4SLB]
F3|pmtn|Cyax [SLB,9/55LB]
F4|prmu, n < 4|Cyax [SLB,13/6SLB]
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Problem Optima localization
03| Gnax [SLB,4/3SLB]
O3Jv = 2|Cnax [SLB,5/4SLB]
F3|pmtn|Cyax [SLB,9/55LB]
Fa|prmu, n < 4|Crpax [SLB,13/6S5LB]

@ It is proved, that for any instance | of the O||Cpax problem
Cro (1) < A(1)/2, where A(l) =" ¢; — total instance load.

max
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@ Exact form of the functional dependancy of the upper bound of
optima localization interval on the total instance load for O3||Crax-
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@ Exact form of the functional dependancy of the upper bound of
optima localization interval on the total instance load for O3||Cnax

Wi
P
T

Nt

—_
N
Nlo +
—
o
w
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Open questions

@ Optima localization for O4||Cnax (it is unknown, if an instance /
with G (1) > $SLB exists)

max
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Open questions

@ Optima localization for O4||Cnax (it is unknown, if an instance /
with G (1) > $SLB exists)

e Optima localization for F4|prmu| Cmax (conjecture: [SLB, £ SLB])

e Optima localization for F4||Cpax (it is known, that upper bound of
the interval is at least 1)

@ Sviridenko's conjecture: for any instance / of the O||Cnax
problem G (1) < SLB + pmax-
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Thank you for attention!




Thank you for attention!

Questions?




