XXIII International Conference

Mathematical Optimization Theory and Operations Research
MOTOR-2024

Application of GPU computing to solving
discrete optimization problems

Pavel Borisovsky

Sobolev Institute of Mathematics SB RAS
(Omsk department), Omsk, Russia

This research is supported by Russian Science Foundation grant 22-71-10015

Graphics processing units

e Large number of cores (several thousands).

e SIMD (single instruction multiple data) archi-
tecture.

e Besides video gaming are extensively used
in machine learninig, mathematical modeling,
cryptocurrency, etc.

CPU GPU

Multiple Instruction Single Instruction
Multiple Data Multiple Data

Graphics processing units

GPU

A very short introduction to CUDA

Nvidia CUDA SDK (Compute Unified Device Architecture) is a tool for
GPU programming in C language.

Classic textbook example. Compute the sum of two vectors c = a + b

CPU GPU
Sequentially for 2 := 1 to n Create m threads.
c[i] = ali] + b]i] For each thread 4:

c[i] = a[i] + bli]

CPU — GPU communications

host copy data device

o

‘perform
computations

«-. S

copy result

CUDA basics
HOST i DEVICE memory

void main(void) {

int *a, *b, *c:
/! Allocate host memory for a and b
and fill them with values

int *dev_a, *dev_b, *dev_c;
!/ Allocate GPU memory

oo

/I Copy arrays from host to device
FLTEEY /_global__ void sum{(int *a, int *b, int *c)

{

f/ Create n threads on GPU and run a GPU code

sum <<< 1, n >>> (dev_a, dev_b, dev_c); int i = threadldx.x;

c[i] = a[i] + bIi];

/! Copy result from device to host c | }
/I print the result I
|

Blocks and threads

Actually, the thing are a bit more complex.

sum <<< 1, n >>> (dev_a, dev_b, dev_c)

The number of threads n must be < 1024.

In addition, we may set the number of blocks m.

sum <<< m, n >>> (dev_a, dev_b, dev_c);

which means m blocks, each one contains n threads.

The balance of threads and blocks significantly affects the performance.

Hint. If you need IN threads in total, a reasonable choice for the first
attempt could be: m = [IN/32] blocks and n = 32 threads in one
block. But there could be better settings.

Dimensions of blocks and threads

Blocks and threads can have up to three dimensions.

Example.
<<< dim3(m1, m0), dim3(nl, n0) >>>.

blockldx.y

200099 200900 000000 | v0eeve | eeveee | veerne
200000 [o00000 000000 s0sses | esssee | sesnne
see0ee Joeoveve [oeveeoo | voevee | vecvee]| 0o
ee006e Joee000 |oecseoo | eeecsee]| 0evsee | 6ec00ee
200090 | sossss |00 s000 | esveessr | sessse]| s00eee
blockldx.x | ®*®®®®® | eesces |scessce | sssncee | eeesse]| s0ssoe
: LA R LR R PEPO P O 00000] 400000 LA R R R L LA R LR LR
s000ee | osovses |[0es00s]| 0ess0s | s00000] 400000
200000 | s00000 | 000000] s0s00s|esssss | 000000
290099 | s00000 | 00000] 200000 |evesee | 900000

LA R LR L LA R LR R L AALELEIEEEEL N EER LR S LA R R R L
200000 Jeosess | 000000] ssssesssssee | 6000
sesssee [000000 | sessss]| 200000 | sssses | 000
sesses [#0000 0 | vecssse]| o000 se | veseee | e
200000 [958044408880 200000 t00000 | 0000
sosses [000000 | teeete] so0s00s]ssssee | 600000

GridDim.y

GridDim.x

Many GPUs

/MPI T MPI\

GPU 1 GPU 2 GPU k

N\

Example: vertex independent set problem

Find the largest set of vertices in a graph such that there no two vertices

In this set connected by an edge.

Consider the complete enumeration

algorithm. Each set is encoded by an integer number.

Decimal Binary
1 00001
2 00010
3 00011
30 11110
31 11111

Set

{1}
{2}
{1.2}

{2,3,4,5)
{1.2.3.4,5)

Let f(x) be the number of vertices if @ represents an independent set and

f(x) = 0 otherwise.

Example: vertex independent set problem

@ At the first stage (call it "map”), evaluate f(x) for all « in parallel and
store them in memory:

1 £(1)

2 (2)

and so on.

e At the second stage (“reduce”), find @ with the maximal f(x).
This can be also done in parallel.

}max:

}max —1

}max —

max

}max —1

}max —

https://github.com/pborisovsky/VISP_ GPU

Travelling Salesman Problem

Consider classic dynamic programming algorithm (Held, Karp, 1962).
For a set of cities P and city ¢ ¢ P let f(z, P) be the optimal path
starting from ¢ and visiting all the cities of P.
Bellman equations.
f(i,{3}) = ay
7, {PY) = min{ay, + £(3, P\ {5))
In the algorithm, for each k the values f(i, P) are evaluated for all the

subsets P such that Card(P) = k.

https://github.com/pborisovsky/tsp-dp-gpu

Experimental results

n CPU AMD CPU AMD GPU GTS 450 | GPU Tesla V100
Phenom II (2008) EPYC 7502 (2019) (2010) (2017)

24 24 s. 13.5s. 0.75s. 14 ms.

25 53s. 30 s. 1.5s. 29 ms.

26 120 s. 71 s. - 65 ms.

27 267 s. 153 s. - 140 ms.

Can be used in other algorithms for optimization of small parts of a sequence.

Borisovsky P. Exact Solution of One Production Scheduling Problem // In: Optimization Problems
and Their Applications. OPTA 2018. Communications in Computer and Information Science, Springer,

Cham. Vol. 871. 2018. pp. 56-67.

Borisovsky P. A., Eremeev A.V., Kallrath J. Multi-product continuous plant scheduling: com-

bination of decomposition, genetic algorithm, and constructive heuristic // International Journal of
Production Research. V. 58. N.9. — 2020.- P. 2677-2695.

A short literature review: Exact algorithms

Borisenko, A., Haidl, M. & Gorlatch, S. A GPU parallelization of branch-
and-bound for multiproduct batch plants optimization // Journal of Su-
percomputing. 73. - 2017. - P. 639-651.

Kaptak B.M., Punattu A.B. TllapannenbHblii nogxon K pelleHUto
3adayn OfHOMEPHON NpogosXKeHHONR ynakosku (1cbpp) ¢ ncnonb3osanuem

TexHonorun CUDA // BectHuk Bawknpckoro ynusepcntera. T.18.N.1. -
2013. - C. 11-14.

[Monos M.B., T[locbinkun M.A. DdbekTuBHas peannsaumst TOYHbIX
aNiIrOPUTMOB PeLleHNst 33[a4 AWCKPETHON ONTUMMU3ALUMM Ha rpaddonyecKnx
yckoputensix // CoBpemeHHble nHpopMauuoHHble TexHonorun u UT-

obpasosatHue. T.14. N.2. - 2018. - C. 408-418.

A short literature review: Metaheuristics

Luong T.V., Melab N., and Talbi E. GPU Computing for Parallel Local
Search Metaheuristic Algorithms // in IEEE Transactions on Computers,
V.62, N.1., 2013. pp. 173-185.

Schulz C., Hasle G., Brodtkorb A.R., Hagen T. R. GPU computing in
discrete optimization. Part II: Survey focused on routing problems //
EURQO Journal of Transportation and Logistics. V.2. - 2013.- P. 159-186.

Pedemonte M., Nesmachnow S., Cancela H. A survey on parallel ant
colony optimization // Applied Soft Computing, 11 (2011) 5181-5197.

Tan Y., Ding K. A survey on GPU-based implementation of swarm
intelligence algorithms // IEEE Transactions on Cybernetics V.46, N.9.
2016. 2028 — 2041.

Does Gurobi support GPUs?

The Gurobi development team is watching GPUs (Graphics Process-
ing Units) closely, but up to this point, all of the evidence indicates that
they aren't well suited to the needs of an LP/MIP/QP solver. Specifically:
GPUs don't work well for sparse linear algebra.... GPUs are built around
SIMD computations, ... is not well suited to the needs of parallel MIP.

The Gurobi Optimizer is designed to effectively exploit multiple cores
in a CPU, so you'll definitely see a benefit from more parallelism in the
future.

GPUs do not help: Gurobi has invested significant time around
this question. Our current assessment is GPUs are not able to provide a
performance benefit for solving optimization problems.

hitps:/ /support.gurobi.com/

Difficulties 1n practical application of GPU
computing

e Complex models (large number of variables and constraints, changing
requirements).

e Complex technologies (blocks and threads, memory hierarchy, coalesc-
ing of memory requests, complex debugging).

e Complex algorithms (MIP methods, Branch and Bounds, etc.)

Local search

—>

I

 m—

! ==...
 m—
 m—

current hew solution

solution neighborhood

e Deterministic: enumerate the whole neighborhood, or some part, and
choose the best neighbor.

e Randomized: generate several random neighbors and choose the best
one. This is equivalent to the (1+X\)-Evolutionary algorithm.

e |terated Local Search (ILS): when a local optimum is reached, perform
“shaking” procedure that makes relatively large changes to the current
solution and repeat the local search.

Genetic Algorithm with Local Search
(Memetic Algorithm)

n® LS
Select Cross _ Mut 77T

_
T A 1~ 1—m \cl

-] | 71—>|:—’/702

F I

The local search part can be implemented in parallel on GPU.

Borisovsky, P., Kovalenko, Y. A Memetic Algorithm with Parallel Local Search for Flowshop
Scheduling Problems // In: Bioinspired Optimization Methods and Their Applications (BIOMA 2020).
Lecture Notes in Computer Science, 12438 LNCS. pp. 201-213 (2020)

Borisovsky P. A parallel greedy approach enhanced by genetic algorithm for the stochastic rig routing
problem // Optimization Letters. V. 18, P. 235-255 (2023)

Parallel randomized local search

]
)]
1
C_J
] C_J
]
]
)]
current [:
solutions
randomly
chosen

neighbors

} o=
=

)

hew
solutions

Parallel “Go with the Winners (GWW)” al-
gorithm with Iterative Local Search

mutations

—= —l — = -]
— = R —E—L
[—= —| —=—-C
1 — = — —=—s]
[— = —| —=—]
[J—= —lI =[]

Random iterated local search Random iterated local search

sorting

Aldous D., Vazirani U.: “Go with the winners” Algorithms. Proceedings of 35th IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 492-501 (1994)

Borisovsky P.A. A Parallel “Go with the Winners™ Algorithm for Some Scheduling Problems, Journal
of Applied and Industrial Mathematics, V.17, N.4, P. 687-697 (2023)

Code optimization: Memory coalescing

If a sequence of threads accesses neighboring memory cells in order (e.g.,
some thread ¢ reads cell k, thread 2 4 1 reads cell k+1, etc.) then requests
can be combined into one.
(https://docs.nvidia.com/cuda/cuda-c-best-practices-guide)

device memory

m oo

threads % % % ? ?

16

Usage of memory coalescing

In the populational heuristics (Genetic algorithm, Go with the winners, etc.)
it is recommended to store population by columns.

1 2 3 N

e e

OpenCL: an alternative to CUDA

Basically the same concepts but different terminology.

CUDA OpenCL
Thread Work item
Block Work group

More “boilerplate” code in OpenCL.
CUDA OpenCL

kernel = clCreateKernel(...);

queue = clCreateCommandQueue(. ..

my_func<<<m, n>>>(...); clSetKernelArg(...);
clSetKernelArg(...);
clEnqueueNDRangeKernel(. . .)

OpenCL: an alternative to CUDA

CUDA is an extension to C programming language (and a compiler).

OpenCL is a specification.

opencL RIS

CPU Nvidia AMD
implementation driver driver

GPU support in high-level languages

Usually, it consists of writing the GPU part of code in C and call it from
the high-level language.

CUDA OpenCL

PyCuda PyOpenCL

jcuda jocl
Aparapi

Julia programming language
(high-level model)

Frequently asked question

“Can | run MFA (My Favorite Algorithm) on GPU?"

e If it is a matheuristic that relies on CPLEX, Gurobi, etc., then the
answer is no'.

@ |f it cannot be parallelized then it will be rather useless.
e If it can be parallelized then it is worth to try.
In fact, the question should be

"What speed-up can be acheved with GPU?".

The answer depends on many things: the algorithm itself, the implementa-
tion, and the hardware.

Thank you for your attention!

®first ®Prev ®Next ®Last ®Go Back ®Full Screen ®Close @ Quit

