O6 onTMMmM3aymnm HaCTPOUKM
napameTpoB 10 Gurobi

YctioroB B.H., IHcTuTyT matematukn nm. C.J1. Cobonesa CO PAH
(Omckmnn punman)

ccnenoBaHWe BbINMOMHEHO 3a cYeT rpaHTa Poccuinckoro Hay4yHoro gooHaa
Ne 22-71-10015, https://rscf.ru/en/project/22-71-10015/
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Feature extraction

MIPLIB 2017 — The Mixed Integer Programming Library

& D»A.rr'co oan fé

In response to the needs of researchers for access to real-world
mixed integer programs, Robert E. Bixby, E.A. Boyd, and R.R.
Indovina created in 1992 the MIPLIB, an electronically available
library of both pure and mixed integer programs. Since its
introduction, MIPLIB has become a standard test set used to
compare the performance of mixed integer optimizers. Its
availability has provided an important stimulus for researchers in
this very active area. The library has now been released in its sixth
edition as a collaborative effort between Arizona State University,
COIN-OR, CPLEX, FICO, Gurobi, MathWorks, MIPCL, MOSEK,
NUOQPT, SAS, and Zuse Institute Berlin. Like the previous MIPLIB
2010, two main sets have been compiled from the submissions.
The Benchmark Set contains 240 instances that are solvable by
(the union of) today’s codes. For practical reasons, the
benchmark instances were selected subject to various constraints
regarding solvability and numerical stability. The much larger
Collection Set represents a diverse selection regardless of the
above, benchmark-relevant criteria. Download the instance sets
as well as supplementary data, run scripts and the solution
checker from our Download page.

= vJ loss

e KNOWN @ networks
. dence yni 0 G) E: § desig "‘f"_‘
g applications arc limit 4 cos! -,
 versionformulation 8 S nana';empm oparator
5 ipDinary unknown & generated < %

Wy

'3 B 5 (2] 20
EZ 3 g;gt%»;ncb??stramts (Ugi—,l sma "é
[ vCOlUanSIng Cg:gg ?;O)rawh\uay:fi
Shorizon  _NEOS SQUATS tast o Eg %’ & & constraint
% ¢ file §+&=C £ additional
:"=scheduling !
m: fium.f netw r L 5 Infeemation
optimal
Ip r T ]
Mcu"o:lg g ro e c ;? o
hary dO s s
cc%é@lfloﬁ a % = ™
Tolkywing N B
3 ! l at contains W E 3
53 planning @)@ O 8535
A z ' O 3g
EEhet QUOY E
£ hmoxurg = g =°
=R
3252 C O-==problems
black 3 = 8 (U z Irhq, tg 2
pm(‘m on.:=E o< m: rg
82 s E BE.

0 ,W et i vertices

gbased R
inigs finding <

Inventory



- Table 4 Description of instance features used. Set notation is abbreviated, e.g., {A # 0} denotes {(i, j) €
eature extraction R PR

Group Features Description Scaling
Size 3 Size m.n of matrix, nonzero entries log(x)?
4.3 Instance features I{A # o)1 N
VARIABLE 3 Proportion of binary. integer. and
g g 5 TYPES continuous variables 52, 5L Z<
Here, we describe the first nine feature groups in Table 4. We use the shorthand vector AL L B O e
PR S i d BIECTIVE 5 Nqn_zem density of objective function
statistics to refer to five values summarizing the entries of a vector v € RY . Let NONZERO el poth total and by variable type
d/ _ 5 b h b f ﬁ 4 . f h h b ll h DENSITY (bin.. int., cont.), 0-1 indicator for
= |{j : |vj| < oo}| be the number of finite entries of v, which can be smaller than feasibiliy probleras without objective
d in the case of, e.g., bound vectors, and let v’ be the restriction of v to its finite entries. OBJECTIVE 6 Vector statistics and dynamism of ¢ ¢ normalized
We assume without loss of generality that v’ is sorted, vi < v) < --- < v/,. The five e s
E g y 2 S == — il VARIABLE 12 Finite densities .LL'_'I:_’”.H .ll‘.‘in’&l. Vector
values are BOUNDS of bounds, vector statistics of upper statistics
bounds «* and bound ranges u* — £*. scaled by
s ’ siglog(x)
—mm:vkHe vl 2 MATRIX 6 Vector statistics of nonzero entries logyo(x) for
— max . v — ‘U;,’ NONZEROS |{a; # 0}| by row in A, nonzeros per nonzeros per
d column AZ0)) A;é() . column
. 1 / MATRIX 19 Vector statistics of the four Every a;
— mean : v — ‘T Z v j’ COEFFICIENTS m-dimensional vectors describing the normalized
j=l min, mean, max, and std of the nonzero by lla; |l
coefficients {a; # 0} in each row
: / / s . ; !
— median : v — (v . +v , ) /2 and Row 5 Vector statistics of row dynamism logg(x)
d'+1 d+1 2 N, a
L5 [5=1 DYNAMISM i (.[{l,?;e ,
i d 2 SIDES 19 Vector statistics of left- and right-hand Every a;
_ . i ! A / sides ¢4, 4 and concatenated normalized
std : v > d' Z (vj mean(v )) ’ (1€41]1u). nonzero and finite by [lai [l
=1 densities of £4, u#
" y : " CONSTRAINT 17 Proportion of classes of special linear
Note that infinite entries can only occur for the variable bound vectors ¢* and u* and CLASSIFICA- constraints: singleton, precedence,
the left d siohthand sid t eA A F t that tai v inifinie TION knapsack, mixed binary (see Sect. 4.4)
c ‘e > .an nght- ‘an Sll CVeClors , W . Foravector l) at comains only Infinite DECOMPOSITION 10 Features describing decomposition D
entries, i.e., for which d’ = 0, the above vector summaries are not well-defined. If found by GCG;V"h Tasxim“m
£ I 5 s area score (see Sect. 4.5):
d' = 0, the corresponding statistics were set to 0 in the data. Note that even if the areascore(D). k, vector statistics _
(except std) of (L[,_f.l,’. ..... -%Ll)
. Nk
and (@L' <<<<< ]—‘,’,L') . Not available

for all instances



Feature extraction

original formulation has infinite bounds on variables, trivial presolving may often infer
finite bounds for those variables.

The dynamism of a vector with finite entries is the ratio of the largest and smallest
absolute entries, i.e., [|v||oo/min{|v;| : v; # 0}. The dynamism is always at least 1. If
the dynamism of any single constraint exceeds 10°, this is an indication of a numer-
ically difficult formulation. Note that the dynamism is invariant to the normalization
procedure. Combining the dynamism of each constraint yields an m-dimensional vec-
tor, which can be summarized using vector statistics.

The feature group MATRIX COEFFICIENTS summarizes the nonzero coefficients
of the matrix A as follows. First, each row a;, | < i < m, of A is normalized by
its largest absolute coefficient, such that all coefficients are in the range [—1, 1]. The
nonzero entries of g¢; are then summarized by four of the five vector statistics explained
above, namely the min, max, mean, and std. Going through all rows, we obtain four
m-dimensional vectors describing the min, max, mean, and std per row. Each of these
vectors is then summarized via vector statistics, which yields a total of 20 statistics
that summarize the cofficients of A. Examples are the mean minimum coefficient over
all m rows, or the standard deviation of all m maximum coefficients, etc. The feature
group comprises 19 out of these 20 coefficient statistics, because the maximum over
all m maximum coefficients is equal to 1 for every instance in our data set.

For the feature group SIDES, the m-dimensional left- and right-hand side vectors ¢4
and u# are summarized individually via vector statistics of all their finite elements.
Besides, we compute vector statistics for the finite elements of the concatenated 2m-
dimensional vector (|€4], |u”|) that combines the absolute left- and right-hand sides
of all rows. Note that the row normalization by the maximum absolute coefficient also
affects the row left- and right-hand sides.

For features such as the row or objective dynamism, which may differ by orders
of magnitude between instances, we used a logarithmic scaling. While logarithmic
scaling is fine for vectors with positive entries, it is not applicable to vectors with
potentially negative entries such as the variable lower and upper bound vectors. In
those cases, we apply a customized scaling

siglog : R — R, x > sig(x) log;o(|x| + 1)

to every entry of the corresponding column in the feature matrix F. The map siglog
preserves the sign of each entry.

The collection of the instance features was performed with a small C++ application
called the feature extractor, which extends SCIP by the necessary functionality needed
to report features after trivial presolving and optionally accepts a settings file to modify
the default presolving explained in Sect. 4.1. The feature extractor is a modified version
of a code used already by [22] and available for download on the MIPLIB 2017 web
page (see Sect. 6.3).°

5 The actual computations reported in the following were carried out with five additional, redundant matrix
features. Only during the preparation of the manuscript, they were identified to be identical to other features.
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Cross-validation
Cross Validation

Train-test split 5-Fold Cross Validation
Dataset Fold1 Fold2 Fold3 Fold4 Fold5
L Train Train Train Train
2 : : : Trai
— Training Train Train Train rain
3 Train Train Train Train

| Train Train Train Train
> Testing Train | | Train || Train | | Train
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napamMeTpax no-ymMonyaHuo

BpemeHHble 3aTpaThl npumepHo 40 yacoB NPUMEpPHO 3 CEKYHAbl



Cnacunbo 3a BHMmMaHue!

Jnteparypa:

1. MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming
Library, Gleixner et al.
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4.2 Canonical form

Because the feature computation can be affected not only by presolving but also by the
exact form in which the instance is represented (equality constraints versus inequalities
etc.), we transformed all presolved instances into the following canonical form, which
is slightly more general than the usual one, prior to feature computation.

Definition 1 A mixed integer optimization problem P with input

— m,n,np,nj,n. € N,n =np+n; +n,

— coefficient matrix A € Q"""

— left-hand and right-hand side vectors ¢4, u* € Q7 ,
— lower and upper bound vectors €*, u* € QY ., and

— objective coefficient vector ¢ € Q"

is defined to be an optimization problem of the form

min {CTx . gA S Ax S uA, e.\f S X _<_ ux’x = {0. l}"h X ZM,- X Qn(.}.



