Конструктивные и эволюционные алгоритмы для составления расписаний с учетом расхода энергии при малом числе процессоров

М.Ю. Сахно

Омский филиал института математики им. С.Л. Соболева СО РАН Исследование выполнено за счет гранта Российского научного фонда № 22-71-10015, https://rscf.ru/project/22-71-10015.

Previous Research Scheduling

- Kononov & Zakharova: Speed scaling scheduling of multiprocessor jobs with energy constraint and total completion time criterion (2023)
- Lee & Cai Scheduling one and two-processor tasks on two parallel processors (1999)
- Zakharova & Sakhno: Heuristics with local improvements for twoprocessor scheduling problem with energy constraint and parallelization (2024)

Evolutionary Computation

- ▶ Eremeev & Kovalenko: A memetic algorithm with optimal recombination for the asymmetric travelling salesman problem (2020)
- Neri & Cotta: Memetic Algorithms and Memetic Computing Optimization: A Literature Review (2012)
- ▶ Blum & Eremeev & Zakharova: Hybridizations of evolutionary algorithms with Large Neighborhood Search (2022)
- Doerr & Ghannane, & Ibn Brahim: Runtime Analysis for Permutation-based Evolutionary Algorithms (2024)

Genetic Algorithm with Generational Scheme

- 1: Construct the initial population $P^0 = \{\pi_j^0\}$ of k permutations. Save n_e individuals with the best objective values as elites of P^0 . Put t = 0.
- 2: Until termination condition is met, perform 2.1 for $i \leftarrow 1$ to $(k n_e)/2$
 - 2.1.1 Select two parent permutations π^1 and π^2 using operator $Sel(P^t)$.
 - 2.1.2 Construct $(\pi^{1\prime}, \pi^{2\prime}) = Cross(\pi^1, \pi^2).$
 - 2.1.3 Apply the mutation operator to constructed permutations: $Mut(\pi^{1\prime})$ and $Mut(\pi^{2\prime})$ and save the result as individuals $\pi_{2i-1}^{t+1}, \pi_{2i}^{t+1}$ for population P^{t+1} .

- 2.2 Copy elites of P^t to P^{t+1} and identify elites of P^{t+1} . 2.3 Put t = t + 1.
- 3: Return the best found individual.

Crossover Operators

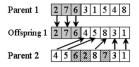


Figure: One Point Crossover (1PX)

Figure: Cycle Crossover (CX)

Figure: Order Crossover (OX)

Figure: Partially Mapped Crossover (PMX)

Mutation Operators

Exchange (swap) mutation

3 8 4 1 5 2 7 6
$$\implies$$
 3 8 7 1 5 2 4 6

Shift (insert) mutation

3 8 4 1 5 2 7 6
$$\implies$$
 3 8 4 5 2 7 1 6

Optimal Recombination Problem (ORP)

Given two parent solutions p^1 and p^2 . It is required to find a solution p' such that:

- (I) $p'_i = p_i^1$ or $p'_i = p_i^2$ for all i = 1, ..., k;
- (II) p' has the minimum value of objective function $\sum C_j(p)$ among all solutions that satisfy condition (I).

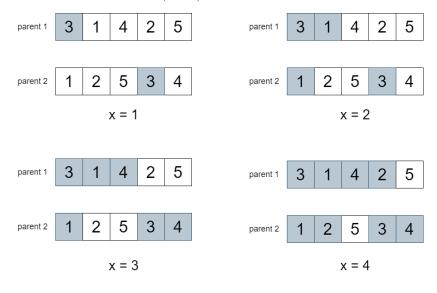
Optimal recombination may be considered as a best-improving move in a large neighbourhood defined by two parent solutions.

うして ふゆ く は く は く む く し く

Property

Partial order given by the permutation.

Optimized Crossovers One Point Crossover (1PX)



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Adaptive Technique

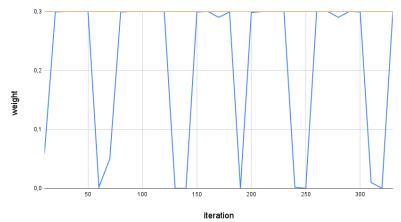
- 1: Choose a crossover. The probability of choosing each operator is proportional to its weight.
- 2: Apply chosen crossover to the parent genotypes.
- 3: Update the weight of the chosen crossover:

 $\phi_a = \begin{cases} w_1, \text{if the new solution is a new global best,} \\ w_2, \text{if the new solution is better than the current one,} \\ w_3, \text{if the new solution is better than one of the parents or both.} \end{cases}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$\rho_a = \lambda \rho_a + (1 - \lambda)\phi_a.$$

Dynamics of crossover weights during GA iterations



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

The classic restarting rule is used.

Scramble Mutation Scheme

1. Randomly choose n_p from Poisson distribution with λ_p . 2. Apply operator Mut for the given genotype n_p times.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Parameter auto-tuning

Parameter name	Parameter description
k	population size
n_e	number of elites
P _{IPRand}	probability of generating a genotype randomly
Selection	selection operator
P_{Cross}	probability of applying the crossover operator
Crossover	crossover operator
P_{Mut}	probability of applying the mutation operator
Mutation	mutation operator
w_2, w_3, λ	parameters of adaptive technique
λ_p	lambda for Poisson distribution

Speed Scaling Scheduling

Processors and Jobs

m is the number of speed-scalable processors $\mathcal{J} = \{1, \ldots, n\}$ is the set of jobs: V_j is the processing volume (work) of job *j* $size_j$ is the number of processors required by job *j* $W_j := \frac{V_j}{size_j}$ is the work on one processor

- r_j is the release date of the job j
- d_j is the deadline for the job j

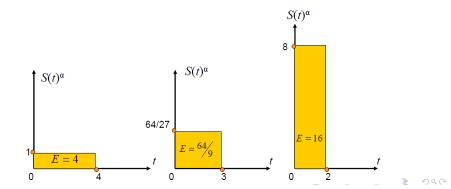
Parameters

Non-preemptive instances arise in systems with distributed memory.

Homogeneous Model in Speed-scaling

If a processor runs at speed s then the energy consumption is s^{α} units of energy per time unit, where $\alpha > 1$ is a constant (practical studies show that $\alpha \leq 3$).

It is supposed that a continuous spectrum of processor speeds is available.



Problem 1

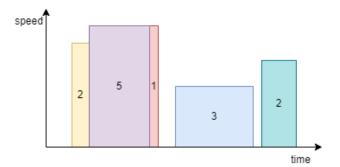
m = 2, E is the energy budget, $\sum C_j$ is the criteria. Solution Example

Processor 1	10	30	40		60	70
Processor 2	20		40	40	60	70

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Problem 2

m = 1, E is the criteria. Solution Example



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results of GA for Problem 1

	GA_{rand}	GA_{adapt_rand}	GA_{opt}	GA_{adapt_opt}	GR_{LI}
avg	2.03%	2.06%	2.11%	1.95%	4.56%
min	0.83%	0.83%	0.87%	0.78%	1.67%
max	3.83%	3.88%	3.69%	3.57%	7.74%

Table: Relative deviations of results from the lower bound for algorithms

	GA_{rand}	GA_{adapt_rand}	GA_{adapt_opt}
avg	1.99%	2.05%	1.94%
min	0.82%	0.83%	0.81%
max	3.86%	3.76%	3.63%

 Table: Relative deviations of results from the lower bound for algorithms

 with parameters found by IRACE package

	$GA_{rand_poisson}$	$GA_{adapt_rand_poisson}$	$GA_{adapt_opt_poisson}$
avg	1.96%	1.96%	1.95%
min	0.83%	0.86%	0.8%
max	3.72%	3.57%	3.63%

Table: Relative deviations of results from the lower bound for algorithms with scramble mutation operator

Results of GA for Problem 2

	GA_{rand_sc}	$GA_{adapt_rand_sc}$	GA_{adapt_opt}	$GA_{adapt_opt_sc}$
avg	0.00%	0.05%	0.01%	0.01%
min	0.00%	0.00%	0.00%	0.00%
max	0.04%	0.44%	0.27%	0.1%

Table: Relative deviations of results from the lower bound for algorithms

	GA_{rand_sc}	$GA_{adapt_rand_sc}$	GA_{adapt_opt}	$GA_{adapt_opt_sc}$
avg	0.00%	0.25%	0.00%	0.37%
min	0.0%	0.00%	0.0%	0.0%
max	0.0%	7.58%	0.0%	11.22%

Table: Relative deviations of results from the optimal solution for algorithms on the special test series

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Scheduling with Predictions for Jobs Processing Times

Formulation

1 processor x_j is predicted value of processing time of job j $\sum C_j$ is criteria

Offline Algorithm

The Shortest Remaining Predicted Processing Time First (SRPPT) algorithm

Online Algorithm

The Round Robin algorithm (RRA)

Preferential Algorithm

SRPPT + Round Robin Algorithm (PA) [Bampis E., Dogeas K., Kononov A., Lucarelli G., Pascual F., 2022]

うして ふゆ く は く は く む く し く

Algorithms Comparison Results

30 instances

	SRPPT	RRA	PA
avg	4.84%	73.97%	34.16%
min	1.05%	67.98%	28.25%
max	11.46%	79.65%	43.38%

Table: Relative deviations of results from the optimal solution for algorithms

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ