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Abstract. Computational complexity of optimal recombination for the
Travelling Salesman Problem is considered both in symmetric and in gen-
eral cases. Strong NP-hardness of these optimal recombination problems
is proven and solving approaches are considered.

1 Introduction

The Travelling Salesman Problem (TSP) is one of the well-known NP-hard com-
binatorial optimization problems [1]: given an (n X n)-matrix (c;;) with non-
negative elements (distances), it is required to find a permutation (i1, g, ..., %y,)
of the elements 1,2, ...,n minimizing the sum ¢;, i, +Ci, 5+ - +Cir, 4.0, +Ci, ig -
In case the matrix (¢;;) is symmetric, the TSP problem is called symmetric as
well. In case such property is not presupposed, we will say that the general case
is considered.

In the general case a tour of the travelling salesman is a Hamiltonian circuit
in a complete digraph without loops or multiple arcs, where the set of graph
vertices is V' = {v1,...,v,} and the set of arcs is A. The length of an arc
(i,7) € A, equals ¢;;. In the symmetric case the tour direction does not matter
so a travelling salesman’s tour is a Hamiltonian cycle in a complete graph G
with the same set of vertices V and a set of edges F, where the length of an
edge {i,7} equals ¢;; = cj;.

This paper is devoted to the complexity analysis of the optimal recombination
problem (ORP) for the TSP. The problem consists in finding a shortest travelling
salesman’s tour which coincides with two given feasible parent solutions in those
arcs (or edges) which belong to both parent solutions and does not contain the
arcs (or edges) which are absent in both parent solutions. These constraints are
equivalent to a requirement that the recombination should be respectful and
gene transmitting as coined by N. Radcliffe [12].

In the symmetric case the input of ORP consists of an edge-weighted com-
plete graph an two Hamiltonian parent cycles in it. In the general case the
problem input consists of an arc-weighted directed graph and two parent circu-
lations. In the general case, the ORP formulation implies that the direction of
arcs in the desired tour must coincide with the direction of arcs in parent solu-
tions, unless both opposite arcs between two vertices are present (in the later
case both directions are possible).



For the first time the optimal recombination was employed by C.C. Agarwal,
J.B. Orlin R.P. Tai [2] for the maximum independent set problem. Presently,
this approach has multiple applications. In the genetic algorithms where the set
of feasible solutions is a set of permutations, the recombination procedures of
such kind were used by M. Yagiura and T. Ibaraki [15], C. Cotta, E. Alba and
J.M. Troya [6], W. Cook and P. Seymour [5] and D. Whitley, D. Hains and
A. Howe [14]. Formulations of the optimal recombination problems in [5, 6, 15]
differ from the ORP formulation considered in this paper, e.g., in [5] the result
of recombination may contain any edge belonging at least to one of the parent
solutions.

Many problems, like the maximum independent set problem, admit polynomial-
time recombination [3,9]. In a number of genetic algorithms, where the opti-
mal recombination turns out to be NP-hard, many authors use the branch-and-
bound methods [4,7] or dynamic programming [15] in the crossover operator.
In such cases, often the approximate versions of the branch-and-bound or dy-
namic programming are used to avoid excessive computational cost. In dynamic
programming [15], the number of states is limited by a given threshold. In the
branch-and-bound methods [4, 7] the result of recombination is the best solution
found within a limited computation time or limited number of iterations. The
dimensionality of recombination problem may also be reduced by choosing an
appropriate granularity of representation [6].

The paper is structured as follows. In Section 2, using the results of A. Itai,
C.H. Papadimitriou and J.L. Szwarcfiter [11] we show NP-hardness of the op-
timal recombination problem in the symmetric case. Here we also prove the
NP-hardness of optimal recombination in the general case, using the well-known
idea of transforming the vertex cover problem into the TSP [1]. In Section 3 we
propose reductions of the considered ORPs to the TSP on graphs with bounded
vertex degrees. The resulting TSP problems may be solved, e.g. by means of the
algorithms of D. Eppstein [8], which have the time bounds significantly smaller
than the well-known upper bound O(n?2") of the dynamic programming [10].
Concluding remarks are given in Section 4.

2 NP-hardness of Optimal Recombination

2.1 Symmetric Case

In [11] it is proven that recognition of Hamiltonian grid graphs (the Hamilton
cycle problem) is NP-complete. Recall that a graph G’ = (V', E’) with vertex
set V'’ and edge set E’ is called a grid graph, if its vertices are the integer vectors
v = (24, Y) € Z* on plane, i.e., V' C Z2, and a pair of vertices is connected by
an edge iff the Euclidean distance between them is equal to 1. Here and below,
Z denotes the set of integer numbers. Let us call the edges that connect two
vertices in Z? with equal first coordinates vertical edges. The edges that connect
two vertices in Z? with equal second coordinates will be called horizontal edges.

Let us assume V' > 4, graph G’ is connected and there are no bridges
in G’ (note that if any of these assumptions are violated, then existence of a



Hamiltonian cycle in G’ can be recognized in polynomial time). Now we will
construct a reduction from the Hamilton cycle problem for G’ to an optimal
recombination problem for some complete edge-weighted graph G = (V, E).
Let the edge weights c¢;; in graph G be defined so that if a pair of vertices
{vi,v;} is connected by an edge of G’, then ¢;; = 0; all other edges in G have
a weight 1. Consider the following two parent solutions of the TSP on graph G
(an example of graph G’ and two parent solutions for the corresponding TSP is

given in Fig. 1).
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Fig. 1. Example of two parent tours used in reduction from Hamilton cycle problem
L) ymax}

to ORP in symmetric case.
Let Ymin = Milyey’ Yo, Ymax = MaXyecy Y. FOr any integer y € {ymin, -
denote by PY the horizontal chain that passes through vertices v € V’ with

Yy = y by increasing values of coordinate x. Let the first parent tour follow the
chains PYmin Pymintl = PYmax connecting the right-hand end of each chain PY

with 1 < ymax to the left-hand end of the chain P¥*!. Note that these connec-



tions never coincide with some vertical edges because G’ has no bridges. To
create a cycle, connect the right-hand end vrr of the chain P¥max to the left-
hand end vgy, of the chain PYmin,

The second parent tour is constructed similarly using the vertical chains. Let
Tmin = MiNyey Ty, Tmax = MaXyey’ Ty. For any integer & € {Tmin, - - -, Tmax
let Q% denote the vertical chain that passes monotonically in y through the
vertces v € V', such that x, = x. The second parent tour follows the chains
QFmin, QTmintl  Q%max connecting the lower end of each chain Q* with z <
Zmax t0 the upper end of chain Q**!. These connections never coincide with hor-
izontal edges since G’ has no bridges. Finally, the lower end vgp of chain Q¥max
is connected to the upper end vyt of chain Q%mir,

Note that the constructed parent tours have no common edges. Indeed, com-
mon slanting edges do not exist since V' > 4. The horizontal edges belong to
the first tour only, except for the situation where y,., = Yy and the edge
{vrB,vLT} of the second tour is oriented horizontally. But if the first parent
tour included the edge {vrp,vpr} in this situation, then the edge {vrp,vLr}
would be a bridge in graph G’. Therefore the parent tours can not have the
common horizontal edges. Similarly the vertical edges belong to the second tour
only, except for the case where z,., = Ty, and the edge {vTr, vpr} of the first
tour is oriented vertically. But in this case the parent tour can not contain the
edge {vTRr,vBL}, since G’ has no bridges.

Note also that the union of edges of parent solutions contains E’. Conse-
quently, any Hamiltonian cycle in graph G’ is a feasible solution of the ORP.
At the same time, a feasible solution of the ORP has zero value of objective
function iff it contains only the edges of E’. Therefore, the optimal value of ob-
jective function in the ORP under consideration is equal to 0 iff there exists a
Hamiltonian cycle in graph G’. So, the following theorem is proven.

Theorem 1. Optimal recombination for the TSP in the symmetric case is NP-
hard in the strong sense.

In [11] it is also proven that recognition of grid graphs with a Hamiltonian
path is NP-complete. Optimal recombination for this problem consists in finding
a shortest Hamiltonian path, which uses those edges where both parent tours
coincide, and never uses the edges absent in both parent tours. The following
theorem is proved analogously to Theorem 1.

Theorem 2. Optimal recombination for the problem of finding the shortest Hamil-
tonian path in a graph with arbitrary edge lengths in NP-hard in the strong sense.

Note that in the proof of Theorem 2, unlike in Theorem 1, it is impossible
simply to exclude the cases where graph G’ has bridges. Instead, the reduction
should treat separately each maximal (by inclusion) subgraph without bridges.

2.2 The General Case

In the general case of TSP the ORP is not a more general problem than the ORP
considered in Subsection 2.1 because in the problem input we have two directed



parent paths, while in the symmetric case the parent paths were undirected. Even
if the distance matrix (c;;) is symmetric, a pair of directed parent tours defines a
significantly different set of feasible solutions, compared to the undirected case.
Therefore, the general case requires a separate consideration of ORP complexity.

Theorem 3. Optimal recombination for the TSP in the general case is NP-hard
in the strong sense.

Proof. We use a modification of the textbook reduction from the vertex
cover problem to the TSP [1].

Suppose an instance of a vertex cover problem is given as a graph G’ =
(V') E’). Tt is required to find a vertex cover in G’ of minimal size. Let us assume
that the vertices in V' are enumerated, i.e. V' = {vy,...,v,}, where n = |V’|,
and let m = |E’|.

Consider a complete digraph G = (V, A) where the set of vertices V' consists
of |E'| cover-testing components, each of 12 vertices: V, = {(v;, e, k), (vj,e, k) :
1 <k <6} for each e = {v;,v,;} € E’, i < j. Besides that, V' contains n selector
vertices, which we will denote by a1, ..., a,, and besides that, a supplementary
vertex an41.

Let the parent tours in graph G be defined by the following two circuits (an
example of a pair of such circuits for the case of G’ = K3 is provided in fig. 2).

1. Each cover-testing component V., where e = {v;,v;} € E' and ¢ < j is
visited twice by the first tour. The first time it visits the vertices that correspond
to v; in the sequence

(viaea 1)7"'3(Ui7676)7 (1)

the second time it visits the vertices corresponding to v;, in the sequence
(vj,e,1),...,(vj,e,6). (2)

2. The second tour goes through each cover-testing component V., where
e ={v;,v;} € E' and ¢ < j in the following sequence:

(vivea 2)7 (Ui7 €, 3)) (vjvea 1), (Ujv €, 2)7 (vjv €, 3)) (viv €, 1)7
(Ui7€7 6)7 <Uj7 674)3 (Uj7 €, 5)7 (Uj7€7 6)7 (’Ui, 674)7 (Ui7 €, 5)

The first parent tour connects the cover-testing components as follows. For
each vertex v € V'’ order arbitrarily the edges incident to v in graph G’ in se-
quence: ¢!, %2, ... e»99() where deg(v) is the degree of vertex v in G’. In the
cover-testing components, following the chosen sequence eV:!,e?2, ... evdeg(v)
this tour passes 6 vertices in each of the components (v,e, k), k=1,...,6, e €
{evt ev? ..., e”’deg(v)}. Thus, each vertex of any cover-testing component V,
e = {u,v} € E’ will be visited by one of the two 6-vertex sub-tours.

The second tour passes the cover-testing components in an arbitrary order
of edges V.,,...,Ve,,, entering each component V;, for any e, = {v;,,v,.} €
E') ir < jk, k = 1,...,m via vertex (v;,,ex,2) and exiting through vertex
(vi,, €k, D). Thus, a sequence of vertex indices 41, ..., %y is induced (repetitions



Ve, Ve, Ve, Ve,

(enl)  (menl)  (meyl)  (menl) (menl) (venl) (vyenl) (vs,enl)

(Vg@gﬁ)

(v,€1,6) d 2 (v,e1,6) (v2,€1,6) (v,e,6) (,e1,6)
v,
(VhELl) (Vngl)
€ e,
2 € Vs
G 4
(v;,e;,6) (V1,€3,6) (v.,ez,é) (V3,€3,6)
Ve, Ve,

Fig. 2. A pair of parent circuits for the case of G’ = Kj. It is supposed that the

incident edges are enumerated as follows. For vertex v' : e’t'! = e, €12 = es; for

2 va,1 3 . evg,l 2

vertex v° : e =ei, ev2? = eq; for vertex v = e9,e"" = e3.



are possible). In what follows, we will need the beginning 4; and the end 4,, of
this sequence.

The parent sub-tours described above are connected to form two Hamiltonian
circuits in G using the vertices aq, ..., an+1. The first circuit is completed using
the arcs

(alv (Ulv evl’lv 1))7 ((vla evl,deg(v1)7 6)7 a2>7

(a27 (")2’ ev271a 1))a ((UQa evg,deg(vg)7 6)a a3)7

cey

(ana (Un7 evn,l’ 1))a ((vna evn,deg(vn)7 6)7 a‘nJrl)a (an+17 al)'

The second circuit is completed by the arcs

(G‘l) a2) I (anfla an)a (an7 an+l)7
(an+1a (vil , €1, 2))3 ((Uima €m; 5)7 al) .

Assign unit weights to all arcs (ai, (v;, evirt, 1)), i=1,...,n in the complete
digraph G. Besides that, assign weight n + 1 to all arcs of the second tour which
are connecting the components V., ,...,V,, , the same weights are assigned to
the arcs (an_H, (viy, €1, 2)) and ((vim,em, 5), al). All other arcs in G are given
weight 0.

Note that for any vertex cover C of graph G’, the set of feasible solutions of
ORP with two parents defined above contains a circuit R(C) with the following
structure (an example of such circuit for the case of G’ = Kj is provided in
fig. 3).

For each v; € C the circuit R(C) contains the arcs (ai, (vi, €L, 1)) and

(vi,v99€9(%) [6) a;, 1 ). The components V,, e € {eVi! ev2 ... evirdea(vi)y
are connected together by the arcs from the first tour. For each vertex v; which
does not belong to C, the circuit R(C) has an arc (a;, a;41). Also, R(C') passes
the arc (an41,a1)-

The circuit R(C') visits each cover-testing component V. by one of the two
ways:

1. If both endpoints of an edge e belong to C, then R(C) passes the compo-
nent following the same arcs as the first parent tour.

2. If e = {u,v},u € C,v & C, then R(C) visits the vertices of the component
in sequence

(u,e,1), (u,e,2), (u,e,3), (v,e,1),...,(v,e,6), (u,e,4),(u,e,b),(u,e,6).

One can check straightforwardly that this sequence does not violate the ORP
constraints.



Ve,
(vienl) (v,e1,1)

(V:,ez,l) (vs,e2,1)

(v1,e1,0) (v3,€2,0)

(v3,e3,0)

Fig. 3. An ORP solution R(C) corresponding to the vertex cover {vi,vs} of graph
G = Ks.



In general, the circuit R(C) is a feasible solution to the ORP because, on one
hand, all arcs used in R(C') are present at least in one of the parent tours. On
the other hand, both parent tours contain only the arcs of the type

((u, e,2), (u,e, 3)), ((u, e, 4), (u,e, 5))7 ((v, e, 1), (v,e, 2)),
((v7 e,2), (v, e, 3))7 ((v, e, 4), (v, e, 5)), ((v, e,5), (v, e, 6))

within the cover-testing components V;, e = {u,v} € E’, where vertex u has
a smaller index than v. All of these arcs belong to R(C). The total weight of
circuit R(C) is |C].

Now each feasible solution R to the constructed ORP defines a set of ver-
tices C'(R) as follows: v;, @ € {1,...,n} belongs to C(R) iff R contains an arc
(ai, (v;, €L, 1))

Let us consider only such ORP solutions R that have the objective value
at most n. These solutions do not contain the arcs that connect the cover-
testing components in the second parent tour. They also do not contain the
arcs (an+1, (vil,el,Q)) and ((vim,em,f)),al). Note that the set of such ORP
solutions is non-empty, e.g. the first parent tour belongs to it.

Consider the case where the arc (ai, (v;, evirl) 1)) belongs to R. Each cover-
testing component V, with e = {v;,v;} € E’ in this case may be visited in one
of the two possible ways: either the same way as in the first parent tour (in this
case, v; must also be chosen into C(R) since R Hamiltonian), or in the following
sequence:

(vi7671)7(Uivea2)7(via673)a (Ujaevl)a""(vj7676)a (vi7654)7(017675)5(1)%676)
(in this case, v; will not be chosen into C(R)). In view of our assumption that
the arc (ai, (v;, eVt 1)) belongs to R, the cover-testing components V., e €
{evit evi2 . evide9(vi)1 should be connected by the arcs of the first tour, and

besides that, R contains the arc ((vi,e““deg(“i),6),ai_H). Note that the total

length of the arcs in R equals |C(R)|, and the set C(R) is a vertex cover in
graph G’, because the tour R passes each component V, in a way that guarantees
coverage of each edge e € E'.

To sum up, there exists a bijection between the set of vertex covers in
graph G’ and the set of feasible solutions to the ORP of length at most n.
The values of objective functions are not changed under this bijection, therefore
the statement of the theorem follows.

3 Transformation of the ORP into TSP on Graphs With
Bounded Vertex Degree

In this Section, the ORP problems are connected to the TSP on graphs (di-
graphs) with bounded vertex degree, arbitrary positive edge (arc) weights and a



given set of forced edges (arcs). It is required to find a shortest Hamiltonian cycle
(circulation) in the given graph (digraph) that passes all forced edges (arcs).

3.1 General Case

Consider the general case of ORP for the TSP, where we are given two parent
tours Aj, As in a complete digraph G = (V, A). This ORP problem may be
transformed into the problem of finding a shortest Hamiltonian circit in a sup-
plementary digraph G’ = (V' A’). The digraph G’ is constructed on the basis
of G by excluding the set of arcs A\(A; U A3) and contracting each path that
belongs to both parent tours into a pseudo-arc of the same length and the same
direction as those of the path. The lengths of all other arcs that remained in G’
are the same as they were in G. A shortest Hamiltonian circuit C’ in G’ trans-
forms into an optimum of the ORP problem by means of reverse substitution of
each pseudo-arc in C’ by the path corresponding to it.

Note that there are two ingoing arcs and two outgoing arcs for each ver-
tex in G’. The TSP on such a digraph is equivalent to the TSP on a cubic
digraph G” = (V", A”), where each vertex v € V' is substituted by two vertices
0,0, connected by an artificial arc (9, 0) of zero length. All arcs that entered v,
now enter ¥, and all arcs that left v are now outgoing from ©. Assume that an
arc e € A” is forced and called a pseudo-arc, if it corresponds to a pseudo-arc
in G'.

A solution to the last problem may be obtained through enumeration of all
feasible solutions to the TSP with forced edges on a supplementary graph G =
(V" E). Here, a pair of vertices u, v is connected iff these vertices were connected
by an arc (or a pair of arcs) in the digraph G”. An edge {u,v} € E is assumed to
be forced if (u,v) or (v, u) is a pseudo-arc or an artificial arc in the digraph G”. A
set of forced edges in G will be denoted by F. All Hamiltonian cycles in G w.r.t.
the set of forced edges may be enumerated by means of the algorithm proposed
in [8] in time O(|V”| - 2UEI=IFD/4) Then, for each Hamiltonian cycle from G
in each of the two directions we can check if it is possible to pass a circulation
in G”, and if possible, compute the length of the circulation. This takes O(|V"|)
time for each Hamiltonian cycle. Note that |E|—|F| = d < |E’| < 2n, where d is
the number of arcs which are present in one of the parents only. Consequently,
the time complexity of solving the ORP on graph G is O(n-2%%), or O(n-1.42").

Implementation of the method described above may benefit in the cases where
the parent solutions have many arcs in common.

3.2 Symmetric Case

Suppose the symmetric case takes place and two parent Hamiltonian cycles in
graph G = (V, E) are defined by two sets of edges F7 and E,. Let us construct
a reduction of the ORP in this case to a TSP with a set of forced edges on a
graph with vertex degree at most 4.

Similar to the general case, the ORP reduces to the TSP on a graph G’ =
(V', E’) obtained from G by exclusion of all edges that belong to E\ (E1UE;) and



contraction of all paths that belong to both parent tours. Here, by contraction
we mean the following mapping. Let P,, be a path with endpoints in u and v,
such that the edges of P,, belong to Fy N Ey and P,, is not contained in any
other path with edges from E; N E5. Assume that contraction of the path Py,
maps all of its vertices and edges into one forced edge {u, v} of zero length. All
other vertices and edges of the graph remain unchanged. Let F’ denote the set
of forced edges in G, which are introduced when the contraction is applied to
all paths wherever possible.

The vertex degrees in G’ are at most 4, and |V’| < n. If an optimum of the
TSP on graph G’ with the set of forced edges F’ is found, then substitution of
all forced edges by the corresponding paths yields an optimal solution to the
ORP problem. (Note that the objective functions of these two problems differ
by the total length of contracted paths.)

The search for an optimum to the TSP on graph G’ may be carried out by
means of the randomized algorithm proposed in [8] for solving TSP with forced
edges on graphs with vertex degree at most 4. Besides the problem input data
this algorithm is given a value p, which sets the desired probability of obtaining
the optimum. If p € [0,1) is a constant which does not depend on the problem
input, then the algorithm has time complexity O((27/4)™/3), which is O(1.89™).
There exists a deterministic modification of this algorithm corresponding to the
case p = 1 which requires greater computation time [8].

4 Conclusion

The obtained results indicate that optimal recombination for the TSP is NP-
hard. However, the algorithms exist that solve the optimal recombination prob-
lem in time which is significantly smaller than O(n?2"), the well-known time
bound of the algorithm due to Held and Karp [10].

Apparently, the results on NP-hardness of the optimal recombination may
be extended to some other problems, where the set of feasible solutions consists
of permutations. In case the binary encoding of solutions is used, such extension
could be made using the reductions of optimal recombination problems [9].

There may be some room for improvement of the algorithms, proposed in [8]
for the TSP on graphs with vertex degrees at most 3 or 4 and forced edges, in
terms of the running time. Thus, it seems to be important to continue studying
this modification of the TSP. Also, in future it is necessary to perform exper-
imental study of the proposed optimal recombination algorithms and compare
them to other recombination methods.
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