
Experimental Evaluation of Two Approaches to
Optimal Recombination for Permutation Problems∗

Anton V. Eremeev1 and Julia V. Kovalenko2

May 4, 2016

1 Omsk Branch of Sobolev Institute of Mathematics,
13 Pevtsov str. 644043, Omsk, Russia.

email: eremeev@ofim.oscsbras.ru,

2 Sobolev Institute of Mathematics,
4, Akad. Koptyug avenue, 630090, Novosibirsk, Russia.

email: julia.kovalenko.ya@yandex.ru

Abstract

We consider two approaches to formulation and solving of optimal recombination
problems arising as supplementary problems in genetic algorithms for the Asym-
metric Travelling Salesman Problem and the Makespan Minimization Problem on
a Single Machine. All four optimal recombination problems under consideration
are NP-hard but relatively fast exponential-time algorithms are known for solving
them. The experimental evaluation carried out in this paper shows that the two
approaches to optimal recombination are competitive with each other.

Keywords: genetic algorithm, optimal recombination problem, permutation

Introduction

Performance of genetic algorithms (GA) depends significantly upon the choice of the
crossover operator, where the components of parent solutions are combined to build the
offspring. Optimal recombination problem (ORP) consists in finding the best possible
offspring as a result of a crossover operator, given two feasible parent solutions. The ORP
is a supplementary problem (usually) of smaller dimension than the original problem,
formulated in view of the basic principles of crossover [1]. The experimental results
of M. Yagiura and T. Ibaraki [2], C. Cotta, E. Alba and J.M. Troya [3], W. Cook and

∗The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-30698-8 10].

1

P. Seymour [4], R. Tinós, D. Whitley and G. Ochoa [5] indicate that optimal recombination
may be used successfully in the genetic algorithms for problems on permutations.

This paper is devoted to analysis and comparison of two approaches to construct the
optimal recombination operators for Asymmetric Travelling Salesman Problem (ATSP)
and Makespan Minimization Problem on a Single Machine (1|svu|Cmax).

The first approach is based on the preservation of elements in positions of the parent
permutations. Following this approach for ATSP and 1|svu|Cmax we show that on one
hand the ORP with position-based representation is strongly NP-hard, on the other hand,
almost all of the ORP instances are efficiently solvable. We develop an exact algorithm for
solving the ORP, using enumeration of all possible combinations of the maximal matchings
in cycles of a special bipartite graph. A crossover operator, where this ORP is solved by
means of the proposed algorithm, is called here Optimized Cycle Crossover (OCX) and
may be considered as a derandomization of Uniform Cycle Crossover [6].

The second approach is based on the preservation of the adjacencies found in the
parents. Strong NP-hardness of the ORP with adjacency-based representation is proven
and a solution method is proposed. A crossover operator, which solves this ORP, is called
here Optimized Directed Edge Crossover (ODEC) and may be considered as a “direct
descendant” of Directed Edge Crossover [7].

The theoretical worst-case and average-case upper bounds on time complexity of opti-
mized crossovers obtained in this paper and in [14] are not sufficient to estimate efficiency
of GAs based on such operators. Even if the time complexity of one optimized crossover is
greater than the other, this does not necessarily mean that a GA using the slower crossover
will require more time to find an optimal solution. Note that given the same pair of parent
solutions, the slower crossover operator may be choosing the best offspring from a larger
set of possible offspring solutions, thus giving more advantage to the GA. Therefore, a
deeper analysis is required in order to decide which of the two approaches is the most
appropriate for a given problem. We perform computational experiments to compare the
behavior of GAs that use the optimized crossovers based on the two approaches mentioned
above.

A wide spectrum of metaheuristics and heuristics has been proposed to the ATSP
problem (see e.g. [8, 9, 10]). Many of these algorithms solve the ATSP instances from [11]
very quickly. Note, however, that the present paper is aimed, first of all, at comparison of
the optimized crossovers, rather than constructing fast algorithms for ATSP problem. In
particular, in the computational experiments we test the optimized crossovers in a very
basic GA with elitist recombination without any problem-specific local search procedures
or fine tuning of parameters.

The paper is organized as follows. In Section 1, we provide a formal description of
the Optimal Recombination Problem. Section 2 is devoted to the theoretical analysis
of computational complexity of the two ORPs for Makespan Minimization Problem on
a Single Machine. A similar analysis for Asymmetric Travelling Salesman Problem is
provided in Section 3. The computational experiments are described in Section 4 and the

2

concluding remarks are given in Section 5.

1 Optimal Recombination Problem

The genetic algorithm is a random search method that models a process of evolution of
a population of individuals [12]. Each individual is a sample solution to the optimization
problem being solved. For the sake of generality in this section we can consider combi-
natorial optimization problems, where the solutions are represented by strings of length
n, composed of symbols from some finite alphabet. The components of these stings are
called genes. Individuals of a new population are built by means of variation operators
(crossover and/or mutation).

Performance of the GA depends significantly upon the choice of the crossover
operator, where genes of parent individuals are combined to build the offspring. Optimal
Recombination Problem consists in finding the best possible offspring as a result of a
crossover operator, given two parent individuals. The following definition of the optimal
recombination problem is motivated by the principles of (strictly) gene transmitting
recombination formulated by N. Radcliffe [1].

Given: an instance I of combinatorial optimization problem with the set of fea-
sible solutions Sol, objective function f : Sol → R, and two parent solutions
x1 = (x1

1, . . . , x
1
n),x2 = (x2

1, . . . , x
2
n) from Sol.

Find: a feasible solution (offspring) x′ = (x′
1, . . . , x

′
n) such that

(i) x′
j = x1

j or x′
j = x2

j for all j = 1, . . . , n;

(ii) for each x ∈ Sol such that xj = x1
j or xj = x2

j , j = 1, . . . , n, the inequality

f(x′) ≤ f(x) holds in the case of minimization problem,

or
f(x′) ≥ f(x) holds in the case of maximization problem.

Note that in the case of permutation problems, the set of feasible solutions Sol consists
of permutations, so the offspring is required to be a permutation too.

2 Makespan Minimization Problem on a Single Ma-

chine

Consider the Makespan Minimization Problem on a Single Machine (1|svu|Cmax), which
is equivalent to the problem of finding the shortest Hamiltonian path in a digraph.

3

The input consists of a set of jobs V = {v1, . . . , vk} with positive processing times dv,
v ∈ V . All jobs are available for processing at time zero, and preemption is not allowed.
A sequence dependent setup time is required to switch a machine from one job to another.
Let svu be the a non-negative setup time from job v to job u for all v, u ∈ V , where v 6= u.
The goal is to schedule the jobs on a single machine so as to minimize the maximum job
completion time, the so-called makespan Cmax.

Problem 1|svu|Cmax is strongly NP-hard [13], and cannot be approximated with any
constant or polynomial factor of the optimum in polynomial time, unless P=NP. Therefore
metaheuristics, in particular, genetic algorithms, are appropriate for this problem.

The feasible solutions of 1|svu|Cmax can be represented in two natural ways in a GA:
(I) genes encode jobs and (II) genes encode adjacencies. Let us consider these represen-
tations and the ORPs that correspond to them.

2.1 Optimal Recombination with Position-Based Representa-
tion

Let π = (π1, . . . , πk) denote a permutation of the jobs, i.e. πi is the i-th job on the

machine, i = 1, . . . , k. Put s(π) =
k−1∑
i=1

sπi,πi+1
. Then the problem 1|svu|Cmax is equivalent

to finding a permutation π∗ that minimizes the total setup time s(π∗).
The ORP for problem 1|svu|Cmax with position-based representation, given two parent

solutions π1 and π2, asks for a permutation π′ such that:

(i) π′
i = π1

i or π′
i = π2

i for all i = 1, . . . , k;

(ii) π′ has the minimum value of objective function s(π′) among all permutations that
satisfy condition (i).

The following theorem is obtained in [14].

Theorem 1 The ORP for problem 1|svu|Cmax with position-based representation is
strongly NP-hard.

We build an algorithm for solving the formulated ORP, using the approach of
A.I. Serdyukov [15] which was developed for solving the travelling salesman problem
with vertex requisitions.

Let us consider a bipartite graph G = (Vn, V, U) where the two subsets of vertices of
bipartition Vn = {1, . . . , n} and V have equal sizes and the set of edges is U = {{i, v} :
i ∈ Vn, v = π1

i or v = π2
i }. Now there is a one-to-one correspondence between the set of

perfect matchings in graph G and the set of feasible solutions to an ORP instance with
parents π1, π2 : Given a perfect matching of the form {{1, v1}, {2, v2}, . . . , {n, vn}}, this
mapping produces the permutation of jobs (v1, v2, . . . , vn).

4

An edge {i, v} ∈ U is called special, if {i, v} belongs to all perfect matchings in graph G.
Note that a maximal (by inclusion) connected subgraph of graph G with at least two edges
is a cycle. Let q(G) denote the number of cycles in graph G. The edges {i, v} ∈ U , such
that π1

i = π2
i , are special and belong to none of the cycles, while the edges {i, v} ∈ U ,

such that π1
i 6= π2

i , belong to some cycles. Besides that, each cycle j, j = 1, . . . , q(G), of
graph G contains exactly two maximal (edge disjoint) matchings, so it does not contain
the special edges. Hence an edge {i, v} ∈ U is special iff π1

i = π2
i , and every perfect

matching in G is defined by a combination of maximal matchings chosen in each of the
cycles and the set of all special edges.

The cycles of graph G may be computed in O(k) time, e.g. by means of the “depth
first” algorithm [16]. The special edges and maximal matchings in cycles may be found
easily in O(k) time.

Therefore, the ORP with position-based representation is solvable by the following
algorithm: Build the bipartite graph G, identify the set of special edges and cycles and
find all maximal matchings in cycles. Enumerate all perfect matchings of graph G by
combining the maximal matchings of cycles and joining them with special edges. During
enumeration, each of the perfect matchings is assigned the corresponding permutation π
of jobs and s(π) is computed. As a result, one can find the required permutation π′.

The total number of perfect matchings in graph G is equal to 2q(G), so the time
complexity of the above algorithm is O(k2q(G)), where q(G) ≤ bk

2
c and this bound is

tight. Note that the proposed algorithm can be used for different objective functions
defined on the set of permutations (see examples in [2, 3, 6, 17]).

In [14], a modification of the described algorithm was proposed to speed up the eval-
uation of makespan function in the process of perfect matching enumeration. This modi-
fication performs a preprocessing stage, where the values of makespan function for cycle
contacts are computed, and solves the ORP for 1|svu|Cmax in O

(
q(G)2q(G) + q(G)k

)
time.

Moreover in [14], it was shown that for almost all pairs of parent solutions q(G) ≤ ln(k)
ln(2)

,
i.e. the cardinality of the set of feasible solutions is at most k. To describe this result
precisely, let us give the following

Definition 1 [15] A graph G = (Vk, V, U) is called “good” if it satisfies the inequality

q(G) ≤ ln(k)
ln(2)

.

Let <̄k denote the set of pairs of parent solutions with k jobs which correspond to
“good” bipartite graphs G and let <k be the set of all pairs of parent solutions with k
jobs. The results from [14] imply

Theorem 2 |<̄k|/|<k| −→ 1 as k →∞.

According to the frequently used terminology (see e.g. [18]), this theorem means that
almost all of the ORP instances have at most k feasible solutions and thus solvable in
O(kln(k)) time.

5

In what follows, the crossover operator, solving the ORP by means of the algorithm
described above, will be called Optimized Cycle Crossover. Such crossover may be con-
sidered as a derandomization of Uniform Cycle Crossover, which constructs an offspring
so that maximal matching is chosen randomly in each of the cycles [6].

2.2 Optimal Recombination with Adjacency-Based Representa-
tion

Consider representation of solutions based on adjacencies. Here a solution is encoded as a
vector p = (p1, . . . , pk), where pi is the job that immediately precedes job vi, i = 1, . . . , k.
We assume that pi = v0 marks the first element of the sequence, where v0 is an artificial

job and sv0v = 0 for all v ∈ V . Then s(p) =
k∑

i=1

spi,vi
. The problem 1|svu|Cmax is equivalent

to finding a permutation p∗ that minimizes the total setup time s(p∗).
The ORP for problem 1|svu|Cmax with adjacency-based representation, given two par-

ent solutions p1 and p2, asks for a feasible solution p′ such that:
(i) p′i = p1

i or p′i = p2
i for all i = 1, . . . , k;

(ii) p′ has the minimum value of objective function s(p′) among all solutions that satisfy
condition (i).

Theorem 3 The ORP for problem 1|svu|Cmax with adjacency-based representation is
strongly NP-hard.

The proof is based on the known result from [14] about NP-hardness of the ORP for
ATSP with adjacency-based representation (see Section 3). In the proof of NP-hardness
of this ORP in Theorem 1.3 in [14], the vertex cover problem is reduced to it in such a
way that there are arcs belonging to both parent tours (and thus should belong to the
offspring tour). Let us take one of these arcs (v`, v`′) and delete it from both of the parent
tours. The remaining two Hamilton paths will be used now to build a pair of parents for
the 1|svu|Cmax ORP.

Suppose that an instance of ATSP (an n-vertex graph and arc weights cij,
i = 1, . . . , n, j = 1, . . . , n) is given as defined in the proof of Theorem 1.3 from [14].
Let us construct an instance of 1|svu|Cmax problem with k = n + 1, where svi,vj

= cij

for all i = 1, . . . , n, j = 1, . . . , n. The job vn+1 is introduced to ensure that the off-
spring solution will end with job v`. The setup times associated with vn+1 are set to
zero, i.e. svi,vn+1 = svn+1,vi

= 0. Suppose that two tours v`′ = vi1 , vi2 , . . . , vin = v`, v`′

and v`′ = vj1 , vj2 . . . , vjn = v`, v`′ are the parent solutions of the ORP instance for
ATSP constructed in the proof of Theorem 1.3 from [14]. Then the two parent so-
lutions p1 and p2 for the 1|svu|Cmax ORP problem with adjacency-based representa-
tion are defined as follows: p1

i1
= v0, p1

i2
= vi1 , . . . , p

1
in = vin−1 , p1

n+1 = vin and
p2

j1
= v0, p2

j2
= vj1 , . . . , p

2
jn

= vjn−1 , p2
n+1 = vjn . The first and the last setups are the

6

same in these schedules so an optimal ORP solution to 1|svu|Cmax will define an optimal
ORP solution for ATSP, which is NP-hard. The described transformations are efficiently
computable, so the ORP for 1|svu|Cmax problem is NP-hard as well. Q.E.D.

The optimized crossover operator, which solves the ORP for 1|svu|Cmax with adjacency-
based representation, will be called Optimized Directed Edge Crossover and may be con-
sidered as a deterministic “direct descendant” of Directed Edge Crossover [7]. However,
unlike the latter one, Optimized Directed Edge Crossover guarantees a gene transmitting
recombination.

The following theorem gives an upper bound on time-complexity of ODEC.

Theorem 4 The ORP for problem 1|svu|Cmax with adjacency-based representation is solv-

able in O(k22
k
2) time.

The proof is based on a Turing reduction of the ORP to O(k) instances of Travelling
Salesman Problem with forced edges on cubic graphs, i.e. the graphs with maximal
degree three. Let us consider the ORP for 1|svu|Cmax with parent solutions p1 and p2 as
a Shortest Hamilton Path problem on (k + 1)-vertex digraph G′ = (V ∪ {v0}, A) where
the arcs correspond to setups presented in p1 and p2 and the arc costs cij are equal to
the setup times svivj

, i = 0, 1, . . . , k, j = 1, . . . , k. Add a zero-cost arc (v, v0) where v ∈ V
(enumerate all O(k) options to choose v ∈ V). The resulting digraph is denoted by G′

v.
This digraph may be transformed into a cubic graph Gv with forced edges the same way
as in the ORP for ATSP [14]. The graph Gv is constructed so that the setups presented
in both parent solutions p1 and p2 correspond to forced edges.

All Hamiltonian cycles in Gv w.r.t. the set of forced edges are enumerated in time
O(2

k
2) by the algorithm of D. Eppstein [19]. Then, for each Hamiltonian cycle C from Gv

in each of the two directions we can check if it is possible to pass a circuit in G′
v through

the arcs corresponding to edges of C, and if possible, compute the cost of the circuit. So,
the ATSP problem on graph G′

v is solvable in O(k2
k
2) time and, therefore, solving the

ATSP problems on graphs G′
v for all v ∈ V requires O(k22

k
2) time. Q.E.D.

3 Asymmetric Travelling Salesman Problem

In this section, we briefly consider the Travelling Salesman Problem (TSP). Suppose a
complete digraph Ḡ is given. The set of vertices of Ḡ is V = {v1, . . . , vn} and a set of arcs
is A = {(vi, vj) : vi, vj ∈ V, i 6= j}. A weight (length) cij ≥ 0 of each arc (vi, vj) ∈ A is
given as well. It is required to find a Hamiltonian circuit of minimum length. If cij 6= cji

for at least one (vi, vj) then the TSP is called Asymmetric Travelling Salesman Problem
(ATSP).

Feasible solution to the ATSP may be encoded as a sequence of the vertices in the TSP
tour (without loss of generality we assume that the first position contains vertex v1), or
as a vector of adjacencies, where the immediate predecessor is indicated for each vertex.

7

Position-Based Representation. In the case of position-based encoding of solutions
in ATSP, the ORP may be solved by the means of the algorithm described in Subsec-
tion 2.1. A slight modification of the speed-up method from [14] is applicable here as well.
Therefore, the ORP for ATSP with position-based representation is solvable in O(n2

n
2)

time and almost all of its instances are solvable in O(nln(n)) time.
The following theorem is proved analogously to Theorem 2.2 form [14].

Theorem 5 The ORP for ATSP with position-based representation is strongly NP-hard.

Adjacency-Based Representation. The ORP for the ATSP with adjacency-based
representation is shown to be strongly NP-hard but solvable in O(n2

n
2) time [14].

4 Computational Experiment on TSPLIB Instances

4.1 Genetic Algorithm

M. Yagiura, T. Ibaraki [2] applied a genetic algorithm with elitist recombination [20] to
a number of combinatorial optimization problems on permutations. Let us consider the
scheme of the GA with elitist recombination in a general form as it may be applied to a
combinatorial minimization problem from Section 1.

Genetic Algorithm with Elitist Recombination
Step 1. Construct the initial population.
Step 2. Assign t := 1.
Step 3. Repeat steps 3.1-3.4 until some stopping criterion is satisfied:

3.1. Choose randomly two parent individuals x1,x2 from the population.
3.2. Create an offspring x′, applying a crossover to x1 and x2.
3.3. Replace one of the two parents by x′.
3.4. t := t + 1.

Step 4. The result is the best found individual w.r.t. objective function.
In our implementation of the GA with elitist recombination the arbitrary insertion

method [2] is used for generating individuals of the initial population on Step 1. The
population size N remains constant during the execution of the GA.

We apply an optimized crossover (ODEC or OCX) to generate a new individual on
Step 3.2. One of the parents x1, x2 is replaced by the offspring as follows. We sup-
pose without loss of generality that f(x1) ≤ f(x2). Replace x2 by x′ with probability
P (∆1/∆2), otherwise replace x1 by x′, where

∆i = f(xi)− f(x′), i = 1, 2, (1)

P (∆1/∆2) = min
{∆1/∆2

a
, 1

}
. (2)

8

Note that ∆2 ≥ ∆1 ≥ 0 by the definition, and hence ∆1/∆2 ∈ [0, 1] (we consider
∆1/∆2 = 1 if ∆1 = ∆2 = 0). The constant a ≥ 0 is a tunable parameter. If a = 0, then
p′ always replaces p2, and if a = ∞, then p′ always replaces p1.

The described GA was programmed in Java (NetBeans IDE 7.2.1) and tested on a
computer with Intel Core 2 Duo CPU E7200 2,53GHz processor, 2 Gb RAM.

4.2 Testing Problems and Experimental Outline

In the computational experiment, the described above GA was applied to ATSP and
1|svu|Cmax problems for evaluation of the effects of different optimized crossovers. Popu-
lation size N was set to 50 and the tunable parameter a was set to 0.5.

In the experiments, we used the ATSP instances from TSPLIB [11] library. The
ATSP collection includes instances from different applications [21, 22, 23]. The rbg in-
stances come from a stacker crane application. The two ft instances arise in a problem of
optimal sequencing tasks in the coloring plant of a resin production department. The ftv
instances are from vehicle routing. Instances ry48p and kro124p are perturbed random
Euclidean instances.

The names of the 1|svu|Cmax problems, their dimensions and optimal values C∗
max of

makespan function are listed in Tables 1, 2 and 3. The optimal solutions to ATSP in-
stances may be found in [11]. To find the optimal solutions to 1|svu|Cmax instances, we
employed CPLEX MIP solver with addition of problem specific cuts which were con-
structed using the well-known approach [24].

Table 1: Instances of 1|svu|Cmax problems in series ftv
instance ftv33 ftv35 ftv38 ftv44 ftv47 ftv55 ftv64 ftv70 ftv90

k 34 36 39 45 48 56 65 71 91
C∗

max 1159 1323 1399 1488 1634 1485 1656 1818 1482

instance ftv100 ftv110 ftv120 ftv130 ftv140 ftv150 ftv160 ftv170
k 101 111 121 131 141 151 161 171

C∗
max 1691 1857 2023 2189 2320 2511 2561 2642

Table 2: Instances of 1|svu|Cmax problems in series rbg
instance rbg323 rbg358 rbg403 rbg443

k 323 358 403 443
C∗

max 1299 1130 2432 2687

The experiment consisted of two stages. On the first stage, the competing GAs were
run for a given number of iterations in order to estimate the influence of different crossover

9

Table 3: Other 1|svu|Cmax instances
instance ry48p ft53 ft70 kro124p

k 48 53 70 100
C∗

max 13451 5846 36981 35227

operators upon the CPU cost of one GA iteration. Besides that, the shortest average
execution time, denoted tmin, was identified for each problem instance. On the second
stage of experiments, a number of independent runs of competing GAs were made with
each instance, given the time budget tmin seconds for each run. This stage was aimed at
evaluation of frequency of finding optimal solutions.

4.3 Makespan Minimization Problem on a Single Machine

First we consider 1|svu|Cmax problem. In what follows, GA1 denotes the GA with position-
based representation employing the Optimized Cycle Crossover. We use the notation GA2
for the GA with adjacency-based representation where the ORP is solved approximately
with only one application of the algorithm of D. Eppstein. This corresponds to testing
at most two options for vertex v among the vertices that correspond to the last jobs of
parent schedules. Exact solving of this ORP requires enumeration of O(k) options for
vertex v and it was not used in the experiments due to high computational burden.

On the first stage of the experiment, the GA with elitist recombination was run 1000
times for each instance and each run continued for 4000 iterations for all problems except
rbg series. In the case of rbg series, each run continued for 8000 iterations. These
termination conditions were chosen on the basis of preliminary experiments which showed
that such numbers of iterations were enough for GA1 to find the optimal solutions with
a sufficiently high probability (more than 5%).

Average execution times of GAs (in seconds) denoted by tavr
GA1 and tavr

GA2 are shown in
Tables 4 and 5.

Table 4: Average execution time for 1|svu|Cmax instances in series ftv
instance ftv33 ftv35 ftv38 ftv44 ftv47 ftv55 ftv64 ftv70 ftv90

tavr
GA1 0.26 0.25 0.27 0.29 0.3 0.75 0.72 0.95 1.27

tavr
GA2 0.35 0.38 0.44 0.51 0.58 0.71 0.87 1.15 1.49

instance ftv100 ftv110 ftv120 ftv130 ftv140 ftv150 ftv160 ftv170
tavr
GA1 1.59 1.93 2.93 4.34 5.07 3.76 4.41 4.52

tavr
GA2 1.8 2.5 2.84 3.23 4.09 4.88 5.82 8.51

10

Table 5: Average execution time for other 1|svu|Cmax instances
instance ry48p ft53 ft70 kro124p

tavr
GA1 0.43 0.32 0.35 8.1

tavr
GA2 0.66 0.67 1.03 2.03

On majority of the problem instances (16 out of 21) presented in Tables 4 and 5,
algorithm GA1 terminated faster compared to GA2. However the average execution time
of GA2 is at most twice the average execution time of GA1 on all instances, except ft53
and ft70.

On the second stage of experiments, both GAs were run 1000 times for equal amount
of time tmin = min{tavr

GA1, t
avr
GA2}. The results of this stage are displayed in Tables 6 and

7. Here F opt
GA1 and F opt

GA2 are the frequencies of finding an optimum for GA1 and GA2
(respectively).

The statistical analysis of experimental data was carried out using the following ap-
proach. For each problem, the testing of an algorithm is considered as a sequence of ν
Bernoulli trials, where “success” corresponds to finding an optimal solution. In our ex-
periments, we performed ν = 1000 trials with GA1 and GA2 algorithms. The confidence
intervals for the success probability p∗ are built using the standard method [25] applied
to the Bernoulli distribution and presented in Tables 6 and 7 (the confidence level is set
to 5%). These tables show that on most of the instances the considered GAs have similar
performance.

On the first stage of experiments with rbg series the execution time of GA2 was much
longer than that of GA1. Therefore both algorithms were given tavr

GA1 seconds on the
second stage. The execution times tavr

GA1 and the frequencies of finding an optimum in
1000 runs are presented in Table 8. GA1 has a significant advantage on this series, which
is due to large computational cost of crossover in GA2.

We carried out additional experiment in order to find out whether this drastic differ-
ence in computational cost of the two crossovers is due to specific problems structure in
rbg series or it is due to high dimension of these problems. To this end, we generated test-
ing instances with the same numbers of jobs as in rbg and chose the setup times uniformly
from [smax/2, smax], where smax is the largest setup time on the corresponding instance
from series rbg. It turned out that there was no drastic difference between the CPU times
of GA1 and GA2 in this additional experiment, so we conclude that the cause of poor
performance of GA1 on series rbg might be in the specific structure of these instances.

As seen from the tables, GA1 in general demonstrates more stable results than GA2.
The dynamics of CPU time required for solving ORPs in GA1 and GA2 on instances

ftv100, ftv130, ftv150, ftv170 is displayed in Fig. 1. The plots for the remaining problems
of ftv series were analogous and they are skipped here. The CPU time required for solving
ORPs in GA1 on series rbg is shown in Fig. 2. It can be seen that the time-complexity of

11

Table 6: Frequencies of finding the optimum and confidence intervals for 1|svu|Cmax instances
in series ftv
instance ftv33 ftv35 ftv38 ftv44 ftv47 ftv55

F opt
GA1 0.69 0.6 0.6 0.6 0.5 0.49

Iconf
GA1 (0.66;0.72) (0.57;0.63) (0.57;0.63) (0.57;0.63) (0.47;0.53) (0.46;0.52)

F opt
GA2 0.65 0.59 0.59 0.44 0.4 0.5

Iconf
GA2 (0.62;0.68) (0.56;0.62) (0.56;0.62) (0.41;0.47) (0.37;0.43) (0.47;0.53)

instance ftv64 ftv70 ftv90 ftv100 ftv110 ftv120

F opt
GA1 0.49 0.51 0.4 0.37 0.31 0.24

Iconf
GA1 (0.46;0.52) (0.48;0.54) (0.37;0.43) (0.34;0.4) (0.28;0.34) (0.21;0.27)

F opt
GA2 0.49 0.53 0.39 0.33 0.35 0.27

Iconf
GA2 (0.46;0.52) (0.5;0.56) (0.36;0.42) (0.3;0.36) (0.32;0.38) (0.24;0.3)

instance ftv130 ftv140 ftv150 ftv160 ftv170

F opt
GA1 0.27 0.31 0.29 0.4 0.36

Iconf
GA1 (0.24;0.3) (0.28;0.34) (0.26;0.32) (0.37;0.43) (0.33;0.39)

F opt
GA2 0.31 0.41 0.31 0.39 0.3

Iconf
GA2 (0.28;0.34) (0.38;0.44) (0.28; 0.34) (0.36;0.42) (0.27;0.33)

Table 7: Frequencies of finding the optimum and confidence intervals for other 1|svu|Cmax

instances
instance ry48p ft53 ft70 kro124p

F opt
GA1 0.4 0.55 0.43 0.22

Iconf
GA1 (0.37;0.43) (0,52;0,58) (0.4;0.46) (0.19;0.25)

F opt
GA2 0.4 0.35 0.32 0.53

Iconf
GA2 (0.37;0.43) (0.32;0.38) (0.29;0.35) (0.5;0.56)

Table 8: Average time and frequency of finding the optimum for 1|svu|Cmax instances in series
rbg

instance rbg323 rbg358 rbg403 rbg443
tavr
GA1 7.02 7.47 7.54 7.53

F opt
GA1 0.195 0.111 0.107 0.091

F opt
GA2 0 0 0 0

crossover operators decreases with iterations count, which is due to decreasing population
diversity. The CPU cost of optimized crossover in the case of the position-based represen-
tation is somewhat smaller compared to the adjacency-based representation. The ORPs

12

Figure 1: Average CPU time of crossover on 1|svu|Cmax instances in series ftv. The left
plot corresponds to GA1, the right plot corresponds to GA2.

Figure 2: Average CPU time of crossover in GA1 on series rbg.

for instance ftv170 are especially hard for GA2. This observation agrees with the greater
execution time of GA2 and its lower frequency of obtaining the optimum on ftv170.

It was mentioned in Subsection 2.1 that with probability approaching to 1, as k →∞,
randomly chosen parent solutions define an ORP instance with “good” graph G and the
Optimized Cycle Crossover requires O(kln(k)) time. The high frequency of such ORP
instances was observed in the experiments, e.g. on ftv series the “good” graphs G were
observed in more than 60% of crossover calls, and in more than 80% of the calls on rbg
series. In process of GA execution this frequency increased.

4.4 Asymmetric Travelling Salesman Problem

Experiments with ATSP were carried out following the same outline as with 1|svu|Cmax

on instances of TSPLIB. In what follows, GA1’ denotes the GA for ATSP based on
Optimized Cycle Crossover and GA2’ denotes the GA for ATSP based on Optimized
Directed Edge Crossover, where the ORP with adjacency-based representation is solved

13

exactly (see Section 3).
Average execution times of GA1’ and GA2’ (tavr

GA1’ and tavr
GA2’) are close to those of GA1

and GA2 respectively. A rough comparison on the basis of computers performance ta-
ble [26] suggests that the CPU resource given to GAs in our experiments is approximately
3 times the resource used by SAX/RAI memetic algorithm in [8] on all instances, except
for series rbg. The latter series is excluded in this comparison because in [8], a problem-
specific heuristic of W. Zhang [27] was used in construction of initial populations. This
heuristic of W. Zhang is very efficient on series rbg and most likely the optimal solutions
to all rbg instances were found in SAX/RAI memetic algorithm at the initialization stage.

Tables 9, 10 and 11 present the frequencies of finding an optimum in 1000 runs, given
tmin = min{tavr

GA1’, t
avr
GA2’} CPU seconds for each run, and the confidence intervals for the

probability of obtaining an optimum (the confidence level is 5%).

Table 9: Frequencies of finding the optimum and confidence intervals for ATSP series ftv
instance ftv33 ftv35 ftv38 ftv44 ftv47 ftv55

F opt
GA1’ 0.51 0.53 0.52 0.51 0.47 0.4

Iconf
GA1’ (0.48;0.54) (0.5;0.56) (0.49;0.55) (0.48;0.54) (0.44;0.5) (0.37;0.43)

F opt
GA2’ 0.93 0.76 0.75 0.7 0.86 0.67

Iconf
GA2’ (0.91;0.95) (0.73;0.79) (0.72;0.78) (0.67;0.73) (0.84;0.88) (0.64;0.7)

instance ftv64 ftv70 ftv90 ftv100 ftv110 ftv120

F opt
GA1’ 0.4 0.39 0.35 0.33 0.29 0.22

Iconf
GA1’ (0.37;0.43) (0.36;0.42) (0.32;0.38) (0.3;0.36) (0.26;0.32) (0.19;0.25)

F opt
GA2’ 0.79 0.65 0.38 0.47 0.32 0.26

Iconf
GA2’ (0.76;0.82) (0.62;0.68) (0.35;0.41) (0.44;0.5) (0.29;0.35) (0.23;0.29)

instance ftv130 ftv140 ftv150 ftv160 ftv170

F opt
GA1’ 0.29 0.2 0.22 0.38 0.31

Iconf
GA1’ (0.26;0.32) (0.17;0.23) (0.19;0.25) (0.35;0.41) (0.28;0.34)

F opt
GA2’ 0.41 0.42 0.43 0.41 0.3

Iconf
GA2’ (0.38;0.44) (0.39;0.45) (0.4;0.46) (0.38;0.44) (0.27;0.33)

Table 10: Frequencies of finding the optimum and confidence intervals for other ATSP instances
instance ry48p ft53 ft70 kro124p

F opt
GA1’ 0.37 0.53 0.42 0.1

Iconf
GA1’ (0.34;0.4) (0.5;0.56) (0.39;0.45) (0.08;0.12)

F opt
GA2’ 0.42 0.64 0.42 0.47

Iconf
GA2’ (0.39;0.45) (0.61;0.67) (0.39;0.45) (0.44;0.5)

14

Table 11: Frequency of finding the optimum for ATSP series rbg
instance rbg323 rbg358 rbg403 rbg443

F opt
GA1’ 0.145 0.105 0.086 0.079

F opt
GA2’ 0 0.001 0 0

On majority of the problems (19 out of 25) GA2’ finds an optimum more frequently
than GA1’ (in 14 cases among these the confidence intervals for p∗ do not intersect),
although GA1’ is still more successful on rbg series. Better results of GA2’ with adjacency-
based representation in the case of ATSP, compared to the results of GA2 on 1|svu|Cmax

problem, are presumably due to exact solving of the ORP in Optimized Directed Edge
Crossover.

Comparing GA2’ and SAX/RAI memetic algorithm from [8] in terms of frequencies
of finding optimal solutions, we estimate the frequency of GA2’ as approximately 70%
of the frequency reported for SAX/RAI memetic algorithm on all instances, except for
series rbg. This outcome seems to be promising since the general GA outline and tunable
parameters were chosen quite straightforwardly in this paper.

Summing up the experimental results for 1|svu|Cmax problem and ATSP in terms of
frequency of finding optimal solutions we can conclude that the two compared approaches
are competitive with each other. In the case of 1|svu|Cmax problem, GA1 tends to outper-
form GA2 on larger instances such as ftv170, rbg323, rbg358, rbg403 and rbg443. In the
case of ATSP, GA2’ dominates GA1’, except for series rbg where instances have special
structure.

We carried out an additional experiment in order to compare the optimized crossovers
ODEC and OCX to their randomized prototypes DEC and RCX. It clearly showed an
advantage of ODEC and OCX over DEC and RCX. For the large-scale problems such
as ftv110, ftv120, ftv150, kro124p, rbg323, and rbg358 the GA with operators DEC and
RCX found optimal solution within the same CPU time limit tmin no more than once out
of 1000 runs. A similar situation was observed in the case of 1|svu|Cmax problem.

5 Conclusions

Optimal recombination problems for Makespan Minimization Problem on a Single Ma-
chine and for Asymmetric Travelling Salesman Problem are shown to be NP-hard under
two “natural” solutions encodings (position-based representation and adjacency-based
representation). In the case of position-based representation, almost all instances of
the optimal recombination problem are polynomially solvable both for 1|svu|Cmax and

ATSP. The worst case time-complexity of optimized crossover operators is O(k22
k
2) in

the case of adjacency-based representation for 1|svu|Cmax and it is O(k2
k
2) (or O(n2

n
2))

15

in the other cases considered in this paper. The computational experiment indicates that
the two approaches to optimal recombination yield competitive results. However GA
with position-based representation dominates GA with adjacency-based representation
on problems with special structure.

Further research might extend the analysis to other problems on permutations and
reduce some of the known upper bounds on the time complexity of optimal recombination.
In particular, we hypothesize that the time complexity of the optimized crossover for
1|svu|Cmax with adjacency-based representation may be reduced to O(k2

k
2). We expect

that the GA behavior observed in this paper might be helpful for improvement of state-
of-the-art metaheuristics for problems on permutations.

Acknowledgements

This research is supported by the Russian Science Foundation
grant 15-11-10009.

References

[1] Radcliffe, N.J.: The Algebra of Genetic Algorithms. Annals of Mathemathics and
Artificial Intelligence 10 (4), 339–384 (1994)

[2] Yagiura, M., Ibaraki, T.: The Use of Dynamic Programming in Genetic Algorithms
for Permutation Problems. Eur. Jour. Oper. Res. 92, 387–401 (1996)

[3] Cotta, C., Alba, E., Troya, J. M.: Utilizing Dynastically Optimal Forma Recombina-
tion in Hybrid Genetic Algorithms. Proc. of 5-th Int. Conf. on Parallel Problem Solving
from Nature. LNCS, Vol. 1498, 305–314, Springer, Berlin (1998)

[4] Cook, W., Seymour, P.: Tour Merging via Branch-Decomposition. INFORMS Journal
on Computing 15 (2), 233–248 (2003)

[5] Tinós, R., Whitley, D., Ochoa, G.: Generalized Asymmetric Partition Crossover
(GAPX) for the Asymmetric TSP. Proc. of the 2014 Annual Conference on Genetic
and Evolutionary Computation, 501–508, ACM New York, New York (2014)

[6] Cotta, C., Troya, J.M.: Genetic Forma Recombination in Permutation Flowshop Prob-
lems. Evolutionary Computation 6 (1), 25–44 (1998)

[7] Whitley, D., Starkweather, T., Shaner, D.: The Traveling Salesman and Sequence
Scheduling: Quality Solutions Using Genetic Edge Recombination. In L. Davis (ed.),
Handbook of Genetic Algorithms, 350–372, Van Nostrand Reinhold, New York (1991)

16

[8] Buriol, L.S., Franca, P.M., Moscato, P.: A New Memetic Algorithm for the Asym-
metric Traveling Salesman Problem. Journal of Heuristics 10, 483–506 (2004)

[9] Cirasella, J., Johnson, D.S., McGeoch, L.A., Zhang, W.: The Asymmetric Travel-
ing Salesman Problem: Algorithms, Instance Generators, and Tests. In A.L. Buchs-
baum and J. Snoeyink, (eds.), Proc. of ALENEX01. LNCS, Vol. 2153, 32–59, Springer,
Berlin(2001)

[10] Nagata, Y., Soler, D.: A New Genetic Algorithm for the Asymmetric Travelling
Salesman Problem. Expert Syst. with Applications 39 (10), 8947-–8953 (2012)

[11] Reinelt, G.: TSPLIB – A Traveling Salesman Problem Library. ORSA Journal on
Computing 3 (4), 376–384 (1991)

[12] Holland, J.: Adaptation in Natural and Artificial Systems. Ann Arbor, University of
Michigan Press (1975)

[13] Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-completeness. W.H. Freeman and Company, San Francisco (1979)

[14] Eremeev, A.V., Kovalenko, J.V.: Optimal Recombination in Genetic Algorithms
for Combinatorial Optimization Problems: Part II. Yugoslav Journal of Operations
Research 24 (2), 165–186 (2014)

[15] Serdyukov, A.I.: On Travelling Salesman Problem with Prohibitions. Upravlaemye
systemi 1, 80–86 (1978) (In Russian)

[16] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2nd edition, MIT Press (2001)

[17] Hazir, Ö., Günalay, Y., Erel, E.: Customer Order Scheduling Problem: A Compara-
tive Metaheuristics Study. Int. Journ. of Adv. Manuf. Technol. 37, 589–598 (2008)

[18] Chvatal, V.: Probabilistic Methods in Graph Theory. Annals of Operations Research
1, 171–182 (1984)

[19] Eppstein, D.: The Traveling Salesman Problem for Cubic Graphs. Journal of Graph
Algorithms and Applications 11 (1), (2007)

[20] Goldberg, D., Thierens, D.: Elitist Recombination: An Integrated Selection Recom-
bination GA. Proc. first IEEE World Congress on Computational Intelligence. Vol. 1,
508–512, Piscataway, New Jersey: IEEE Service Center (1994)

[21] Fischetti, M., Toth, P.: An Additive Bounding Procedure for the Asymmetric Trav-
elling Salesman Problem. Math. Programming A 53, 173–197 (1992)

17

[22] Fischetti, M., Toth, P.: A Polyhedral Approach to the Asymmetric Travelling Sales-
man Problem. Management Sci. 43, 1520–1536 (1997)

[23] Fischetti, M., Toth, P., Vigo, D.: A Branch and Bound Algorithm for the Capacitated
Vehicle Routing Problem on Directed Graphs. Oper. Res. 42, 846–859 (1994)

[24] Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a Large-Scale Traveling Salesman
Problem. Oper. Res. 2, 393–410 (1954)

[25] Mood, A.M., Graybill, F.A., Boes, D.C.: Introduction to the Theory of Statistics.
3d edition, New York, McGraw-Hill (1973)

[26] Dongarra, J.J.: Performance of Various Computers Using Standard Linear Equations
Software. Technical Report No. CS-89-85, University of Manchester, 110 p. (2014)

[27] Zhang, W.: Depth-First Branch-and-Bound versus Local Search: A Case Study.
Proc. of 17th National Conf. on Artificial Intelligence 930-–935, Austin, TX (2000)

18

