
Comparing Evolutionary Algorithms to the

(1+1)-EA

P. A. Borisovsky 1 , A. V. Eremeev ∗

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of Russian
Academy of Sciences, st. Pevtsov, 13, 644099, Omsk, Russia

Abstract

In this paper, we study the conditions in which the (1+1)-EA compares favorably
to other evolutionary algorithms (EAs) in terms of fitness function distribution at
given iteration and with respect to the average optimization time. Our approach
is applicable when the reproduction operator of an evolutionary algorithm is dom-
inated by the mutation operator of the (1+1)-EA. In this case one can extend the
lower bounds obtained for the expected optimization time of the (1+1)-EA to other
EAs based on the dominated reproduction operator. This method is exampled on
the sorting problem with HAM landscape and the exchange mutation operator. We
consider several simple examples where the (1+1)-EA is the best possible search
strategy in the class of the EAs.

Key words: Evolutionary Algorithm, Comparison, Optimization, Monotonicity,
Domination

1 Introduction

Let the optimization problem consist in finding a feasible solution x ∈ Sol ⊆
X, which optimizes the objective function f : Sol → lR, where X is the
space of solutions, Sol ⊆ X is a set of feasible solutions, and lR is the set
of real numbers. In this paper we assume that X is a subset of Euclidean
finite-dimensional space. If necessary, the spaces of solutions of the discrete

∗ Corresponding author.
Email addresses: borisovski@mail.ru (P. A. Borisovsky),

eremeev@iitam.omsk.net.ru (A. V. Eremeev).
1 Present address: Omsk State Technical University, Prospect Mira 11, 644050
Omsk, Russia.

Preprint submitted to Elsevier Science 3 March 2007

optimization problems (e.g. the Boolean cube {0, 1}n or the set of all permu-
tations of n elements) will be considered as discrete subsets of the Euclidean
space as well.

In general, an evolutionary algorithm searches for the optimal or near-optimal
solutions using a population of individuals, which is driven by the principles
observed in biological evolution. This paper is devoted to comparison of the
evolutionary algorithms to the (1+1)-EA, one of the most simple evolutionary
algorithms with the population consisting of a single individual (see e.g. [17]).

The search process is guided by evaluations of a fitness function Φ(x), which
defines the fitness of an individual x. In case x ∈ Sol, it is supposed that
Φ is a monotone function of f(x): non-decreasing for maximization problems
and non-increasing for minimization problems. In case x 6∈ Sol, the fitness
function may incorporate a penalty for violation of constraints defining the
set Sol. Through this paper we will assume that if Sol 6= X then for any
x′ ∈ X\Sol holds Φ(x′) < maxx∈Sol Φ(x).

2 Framework of Analysis and Comparison Theorem

In order to set up the standard probabilistic framework for analysis of the
random operators of evolutionary algorithms, let us assume that a random
operator Op(u) maps some subset U of a Euclidean space E ′ into a Euclidean
space E with the following three properties:

(i) Given a particular input u ∈ U , the output of Op(u) is a random variable
on E with a probability measure pOp(u, S) = P{Op(u) ∈ S}, defined for all
S ⊆ E, S ∈ BE, where BE denotes the Borel field of subsets on E. (ii) We
will impose a standard assumption from the random processes theory, that the
transition function pOp(u, S) is aBU -measurable function in u for each S ∈ BE,
where BU is the restriction of the Borel field of subsets on E ′ to the set U
(see e.g. [9]). (iii) Besides that, if a random operator Op is used in some
algorithm, then under condition of specific given input u, the outcome Op(u)
is independent of all other preceding events, that have occurred in computation
of the algorithm.

The outcome of an operator may depend on the specific input data of the
problem instance, which is assumed to be fixed (not random) in this paper. In
what follows, the objective function Φ(x) is supposed to be a fixed function,
defined by the problem instance. It is only required that Φ is measurable.

Most of the well-known models of random computation, e.g. the randomized
Turing machine, in finite time allow to represent numbers only from a count-

2

able set of values. All random operators and functions computable in such
models satisfy the measurability requirements (i) and (ii) above.

The current individual on iteration t of the (1+1)-EA will be denoted by x(t).
The initial solution x(0) is generated with some a priori chosen probability
distribution. Each new individual is built with the help of a random mutation
operator Mut : X → X, which adds some random changes to the solution.
The mutation operator is applied to x(t) and if x = Mut(x(t)) is such that
Φ(x) > Φ(x(t)), then we set x(t+1) := x; otherwise x(t+1) := x(t). We do not fix
a particular stopping criterion, because it is not necessary in our analysis.

One of the frequently used mutation operators in the case X = {0, 1}n is the
standard mutation, which consists in changing each bit with a fixed mutation
probability pmut. Other simple examples are the 1-bit-flip mutation operator
which chooses a random position i and changes the i-th bit (see e.g. [18]) and
the isotropic normal mutation where the current solution in lRn is summed to
a random normally distributed variable with zero mean [5,17].

In order to define the general scheme of an evolutionary algorithm we will
assume that the random reproduction operator Rep has a set of solutions
a1, a2, . . . , ar on its input and produces a random output of s offspring

(b1, b2, . . . , bs) = Rep(a1, a2, . . . , ar),

possibly using the specific data of the problem being solved. In general the
reproduction operator may be a problem specific randomized heuristic includ-
ing recombination, mutation and local improvement procedures. In the case
of genetic algorithm the operator Rep consists of crossover and mutation.

Let us consider an evolutionary algorithm EA which corresponds to the follow-
ing scheme: the initial set of solutions a(0,1), . . . , a(0,N) is given (deterministic
or randomly generated), and on each iteration t > 0 a new group of individu-
als a(t,1), . . . , a(t,s) is produced by applying Rep(c1, . . . , cr) where c1, . . . , cr are
some individuals already generated before, i.e. ck ∈ A(t−1) where

A(t−1) = {a(0,l) : l = 1, . . . , N} ∪ {a(τ,j) : τ = 1, . . . , t− 1, j = 1, . . . , s}.

We will denote the sequence of solutions generated in the EA before iteration
t by σt−1. Both A(t−1) and σt−1 are the random values. Formally,

σt−1 = a(0,l), . . . , a(0,N), a(1,1), . . . , a(1,s), . . . , a(t−1,1), . . . , a(t−1,s).

The parents c1, . . . , cr on iteration t are chosen by a random operator of se-
lection Sel : XN+s(t−1) → Xr, such that Sel(σt−1) ⊆ (A(t−1))r.

The random operators Rep and Mut may vary, as a function of the current it-
eration number t, but we will not denote this explicitly for the sake of notation

3

simplicity.

It is easy to see that this scheme covers most of the evolutionary algorithms
such as the genetic algorithms [12], many versions of the genetic programming
algorithms [15] and of the (µ +

, λ)-EA – see e.g. [5,17], ”go with the winners”
algorithms [1] and the simulated annealing [14].

In what follows, we will denote the maximum of fitness function on a se-
quence of solutions by Φ̌(·), i.e. for a sequence y = (y1, . . . , yk), Φ̌(y) =
maxi=1,...,k Φ(yk).

We will compare the reproduction operator of EA and a mutation operator
of the (1+1)-EA using the following

Definition 1 Reproduction operator Rep is dominated by mutation opera-
tor Mut if for arbitrary r-element sequence of individuals a = (a1, . . . , ar) and
arbitrary x ∈ X such that Φ(x) ≥ Φ̌(a), the following condition holds for
all φ ∈ lR:

P {Φ(Mut(x) ≥ φ} ≥ P
{
Φ̌(Rep(a)) ≥ φ

}
. (1)

Theorem 1 (Comparison Theorem) Suppose the reproduction operator Rep
of EA is dominated by a mutation operator Mut of the (1+1)-EA on each itera-
tion t > 0. Let the (1+1)-EA start from x(0) such that Φ(x(0)) ≥ max

i=1,...,N
Φ(a(0,i)).

Then for all t ≥ 0 and all φ ∈ lR holds

P{Φ(x(t)) ≥ φ} ≥ P{Φ̌(σt) ≥ φ}. (2)

Proof. The scheme of the proof is analogous to that of the Fundamental
Theorem for stochastically monotone Markov Chains [9].

Assume by induction that (2) holds for all τ < t (we have the basis of induction
for t = 0 by assumption of the Theorem). Let us fix an arbitrary φ ∈ lR and
define p(x) = P{Φ(Mut(x)) ≥ φ} for every x ∈ X : Φ(x) < φ, and p(x) = 1
if Φ(x) ≥ φ. Using the conditional distribution of Φ(x(t)) given x(t−1) (see e.g.
[8], p.84) we obtain

P{Φ(x(t)) ≥ φ} = P{Φ(x(t−1)) ≥ φ}+∫
{x:Φ(x)<φ}

P{Φ(Mut(x)) ≥ φ | x(t−1) = x}dP (x) = E[p(x(t−1))]

Let us introduce a function δ(ψ) = inf
x:Φ(x)≥ψ

p(x). Note that δ(ψ) is non-

4

decreasing. For any positive integer K define a sequence of subsets

An =
{
ψ :

n

K
≤ δ(ψ) <

n+ 1

K

}
, n = 0, ..., K − 1,

AK = {ψ : δ(ψ) = 1}.
Let Xn = Φ−1(An). For every x ∈ Xn we have Φ(x) ∈ An so δ(Φ(x)) ≥ n/K
and p(x) ≥ n/K. Thus,

E[p(x(t−1))] =
K∑
n=0

∫
Xn

p(x(t−1))dP (x(t−1)) ≥ 1

K

K∑
n=0

n
∫
Xn

dP (x(t−1)) =

1

K

K∑
n=0

nP{x(t−1) ∈ Xn} =
1

K

K∑
n=0

nP{Φ(x(t−1)) ∈ An} =
1

K

K∑
n=1

P
{
Φ(x(t−1)) ∈ Bn

}
,

where Bn = An ∪An+1 ∪ ...∪AK . Due to the monotonicity of δ(ψ) each set B
can be represented in a form [bn,+∞) or (bn,+∞), where b0, b1, ..., bK is some
nondecreasing sequence (it may be that bi = +∞ for some i = 1, ..., K, in this
case all Bi, Bi+1, ..., BK are empty).

Analogously, for a sequence σ ∈ XN+s(t−1) we define

q(σ) = P{Φ̌(Rep(Sel(σ))) ≥ φ}

if Φ̌(σ) < φ and q(σ) = 1 if Φ̌(σ) ≥ φ. Then

P{Φ̌(σt) ≥ φ} = E[q(σ(t−1))]

Consider Yn = Φ̌−1(An) in the space XN+s(t−1). If σt−1 ∈ Yn then Φ̌(σt−1) ∈
An, δ(Φ̌(σt−1)) ≤ (n + 1)/K. Due to the domination assumption, q(σ(t−1)) ≤
p(x) for all x : Φ(x) ≥ Φ̌(σt−1), so q(σ(t−1)) ≤ δ(Φ̌(σt−1)) ≤ (n+ 1)/K and

P{Φ̌(σt) ≥ φ} ≤
K∑
n=0

∫
An

n+ 1

K
dFΦ̌(σt−1)(ψ) ≤

1

K
+

1

K

K∑
n=0

nP
{
Φ̌(σt−1) ∈ An

}
=

1

K
+

1

K

K∑
n=1

P
{
Φ̌(σt−1) ∈ Bn

}
.

By the inductive assumption

P
{
Φ(x(t−1)) ∈ Bn

}
≥ P

{
Φ̌(σt−1) ∈ Bn

}
,

so
P{Φ(x(t)) ≥ φ} − P{Φ̌(σt) ≥ φ} ≥

1

K

K∑
n=1

(
P{Φ(x(t−1)) ∈ Bn} − P

{
Φ̌(σt−1) ∈ Bn

})
− 1

K
≥ − 1

K

5

Finally, setting K →∞, we obtain (2). Q.E.D.

6

2.1 Monotone Reproduction

Now we will see that in some cases there is a natural way to construct a
mutation operator allowing the (1+1)-EA to work at least as good as any EA
using a particular reproduction operator Rep.

Let us define a mutation operator corresponding to Rep as

MutRep(x) = argmax (Φ(x),Φ(c1), . . . ,Φ(cs)),

where (c1, . . . , cs) = Rep(x, . . . , x), i.e. in MutRep(x) firstly the reproduction
Rep is applied to a set of identical parent individuals and then the output
is chosen as the fittest among the parent and the offspring. In case there are
several offspring with maximal fitness we assume that MutRep(x) is uniformly
distributed among them.

In order to identify the situation where MutRep is helpful, we will use the
following definition.

Definition 2 Reproduction operator Rep is called monotone if for arbitrary
r-element sequences a1, . . . , ar and g1, . . . , gr such that

Φ(a1) ≤ Φ(g1), . . . ,Φ(ar) ≤ Φ(gr), (3)

the following conditions hold for all φ:

P
{

max
i=1,...,s

Φ(hi) ≥ φ
}
≥ P

{
max
i=1,...,s

Φ(bi) ≥ φ
}
, (4)

where (b1, . . . , bs) = Rep(a1, . . . , ar) and (h1, . . . , hs) = Rep(g1, . . . , gr).

Informally, this definition requires that substitution of parent genotypes by
genotypes with greater or equal fitness should never decrease the chances of
obtaining sufficiently good offspring. Note that if all conditions (3) are equal-
ities for the sets of parents a1, . . . , ar and g1, . . . , gr, then the probability dis-
tributions of the best offspring fitness for Rep(a1, . . . , ar) and Rep(g1, . . . , gr)
must coincide.

If operator Rep is monotone, then MutRep dominates Rep by construction, so
in this case we can compare an EA with reproduction Rep to the (1+1)-EA
based on MutRep by the means of Theorem 1:

Corollary 2 Suppose a monotone reproduction operator Rep is used in the
EA and the operator MutRep is used in the (1+1)-EA. Let the (1+1)-EA start

7

from x(0) such that Φ(x(0)) ≥ max
i=1,...,N

Φ(a(0,i)). Then for all t ≥ 0 and all φ ∈ lR

holds

P{Φ(x(t)) ≥ φ} ≥ P{Φ̌(σt) ≥ φ}. (5)

A simple proof of this fact in the case of discrete optimization problems can
be found in [6].

A special case of monotone reproduction operator with r = s = 1 is the
monotone mutation operator (note that if Rep is monotone then MutRep is
monotone too). It is important that a mutation operator dominates itself iff
it is monotone, so in this case the (1+1)-EA is an optimal EA, as shown by
inequality (5).

2.2 Examples of Monotone Reproduction Operators

A simple example of monotone mutation can be demonstrated on maximiza-
tion of fitness function Φ(x) ≡ ONEMAX(x) ≡ x1 + . . . + xn with Sol =
X = {0, 1}n, when the standard mutation operator is used and pmut ≤ 1/2
(see the proof of monotonicity in [11]). In fact it was shown in [6] that if there
is a unique maximum x∗ of Φ(x) on {0, 1}n and |Range(Φ)| = n + 1, then
Mut is monotone iff Φ belongs to a class of functions ONEMAX∗∗ introduced
in [10]. To describe ONEMAX∗∗ we first need to define ONEMAX∗ as the
class of functions

ONEMAXa(x) =
n∑
i=1

((xi + ai) mod 2),

where x, a ∈ {0, 1}n. Then, ONEMAX∗∗ by definition consists of all functions
µ ◦ f where f ∈ ONEMAX∗ and µ : lR → lR is a strictly increasing function.

Another case of monotonicity in discrete optimization is established for a
family of instances of the vertex cover problem. In general, given a graph
G = (V,E), the vertex cover problem (VCP) asks for a subset C ⊂ V (called
a vertex cover), such that every edge e ∈ E has at least one endpoint in C. The
size of C should be minimized. Let us consider the non-binary representation
(see e.g. [4]) of the problem solutions, where X = {0, 1}|E| and each coordinate
xi ∈ {0, 1}, i = 1, ..., |E| of x corresponds to an edge ei ∈ E, assigning one of its
endpoints to be included into the cover C(x) (one endpoint of ei is assigned
if xi = 0 and the other one is if xi = 1). Thus, C(x) contains all vertices,
assigned by at least one of the coordinates of x, and the feasibility of C(x)
is guaranteed. The fitness function is by definition Φ(x) ≡ |V | − |C(x)|. It is
shown in [11] that in this case the standard mutation operator is monotone on

8

the family of VCP instances, where G consists of k = |V |/3 disjoined cliques
of size 3.

As an example of mutation monotonicity in continuous optimization, consider
minimization of the Euclidean vector norm f(x) ≡ ||x|| in Sol = X = lRn (also
called the quadratic sphere function), using the isotropic normal mutation.
Formally this case may be characterized by Φ(x) ≡ −||x|| and operator Mut(x)
with normal distribution (x, σ), where σ is a diagonal matrix with identical
diagonal elements.

Let us now consider a simple example illustrating the monotone reproduction
with r = 2, s = 1. Suppose we have an arbitrary function Φ ∈ ONEMAX∗∗

and Rep is the standard 1-point or uniform crossover operator, but the genes
in one of the parent individuals are randomly permuted before the crossover.
It is not difficult to see that in this case Rep is monotone, and it may not be
monotone without the random permutation phase.

For the continuous optimization in lRn the monotone reproduction with “scal-
able” values r = µ, s = λ, λ ≥ µ can be exampled by the reproduction op-
erator of (µ/µI , λ)-ES evolution strategy (see e.g. [5]) in the case of a lin-
ear fitness function. The reproduction of (µ/µI , λ)-ES consists in computing
the centroid a = 1

µ

∑µ
k=1 a

k of the parent solutions a1, . . . , aµ, and building
independently λ descendants by means of isotropic normal mutation of the
vector a.

The monotonicity condition in Corollary 2 may be relaxed in the following
way. We will call Rep weakly monotone if the inequality (4) holds at least for
all

φ > max{Φ(hk) : k = 1, . . . , r}.
It is easy to see that weak monotonicity of Rep implies monotonicity of MutRep.

In all examples given above we deal with the problems of regular structure.
In practice, however, the optimization problems tend to have highly irregular
structure and monotonicity might be a rare case. For instance, if X = {0, 1}n,
then existence of a local optimum of Φ, which is not global, in terms of Ham-
ming distance, implies that the 1-bit-flip mutation is non-monotone.

In situations where the monotonicity condition is violated, the (1+1)-EA may
be less efficient than other EAs. For example, the (µ/µI , λ)-evolution strategy
is known to outperform the (1+1)-EA on the quadratic sphere function in
presence of normal additive noise (see e.g. [2]). An illustration of the similar
behavior of genetic algorithm in case of discrete optimization problems can be
found in [13].

Theorem 1 yields only a sufficient condition of optimality of the (1+1)-EA
in the class of evolutionary algorithms. However, the (1+1)-EA remains a

9

method of choice in many situations where the mutation is non-monotone,
and the computational experiments indicate, that it is useful to consider some
relaxed versions of monotonicity, e.g. monotonicity on average [7].

2.3 Expected Hitting Times and Expected Fitness

Let us now consider the average number of calls to the reproduction operator
made in search for the solution of required quality (e.g. the optimal one) and

the expected fitness after a given number of the calls. We will denote by t
(1+1)
φ

the expected number of iterations until level Φ(x) = φ or greater is reached
by the (1+1)-EA. Analogous hitting time for the EA is tEAφ .

Corollary 3 In conditions of Theorem 1:
(i) If Φ is bounded on X then for all t holds E[Φ(x(t))] ≥ E[Φ̌(σt)];

(ii) if tEAφ is finite then tEAφ ≥ t
(1+1)
φ .

Proof. (i) easily follows from the properties of expectations of stochastically
comparable random variables (see e.g. Chapt. IV[16]).
(ii) Let t be a non-negative integer random variable. Then

E[t] =
∞∑
n=1

nP{t = n} =
∞∑
n=1

n∑
k=1

P{t = n} =
∞∑
k=1

∞∑
n=k

P{t = n} =
∞∑
k=0

P{t > k}.

The change of summation order is valid here if E[t] is finite. For t = tEAφ this
implies

tEAφ =
∞∑
k=0

P{Φ̌(σk) < φ} =
∞∑
k=0

(1− P{Φ̌(σk) ≥ φ}),

and analogously for t = t
(1+1)
φ ,

t
(1+1)
φ =

∞∑
k=0

(1− P{Φ(x(k)) ≥ φ}).

Application of Theorem 1 completes the proof. Q.E.D.

Theorem 1 and Corollary 3 show that if the choice is to be made between
an EA with a reproduction operator Rep and the (1+1)-EA with mutation
operator Mut, in situation where Mut dominates Rep, and these operators
have the same computational cost, then the (1+1)-EA should be preferred.

10

3 Lower Bounds on Expected Running Times

Let φ∗ be the maximal fitness value for a given instance of optimization prob-
lem. Suppose there exists some mutation operator Mut, dominating reproduc-
tion operator Rep. In case there exists a lower bound L on t

(1+1)
φ∗ , this will

imply by Corollary 3 that for any EA based on Rep, the hitting time for the
optimum is at least L. To illustrate this approach we will consider the sorting
problem as a discrete optimization problem following the framework suggested
by Scharnow, Tinnefeld and Wegener in [19].

Given an order � on the set of distinct elements {1, . . . , n}, the standard sort-
ing problem asks for such permutation π∗ of elements {1, . . . , n} that π∗(1) �
π∗(2) � . . . � π∗(n). In what follows, sorting is considered as an optimization
problem of maximizing the sortedness functionHAM(π) = |{i : π(i) = π∗(i)}|
on the set of all permutations. Here HAM(π) gives the number of correctly
set positions in (π(1), π(2), . . . , π(n)). From the practical point of view this
approach is unlikely to be useful, since the evaluation of HAM(π) is usually
impossible until one knows π∗; however, it is of interest for the theoretical
analysis.

In the framework of this paper, we will consider all permutations as vectors of
the form (π(1), . . . , π(n)) ∈ lRn, thusX is the set of all vectors of permutations,
Φ(x) ≡ HAM(x) for any x ∈ X and φ∗ = n.

Without loss of generality we will assume that π∗(i) = i for all i = 1, . . . , n.
This assumption is legitimate due to the symmetry of the set of permutations,
as long as the EAs obtain the problem-specific data only through the evalua-
tion of Φ(x) (i.e. this is a black-box optimization problem – see e.g. [10]).

In order to describe the mutation, let us first define the exchange operation:
choose i 6= j ∈ {1, . . . , n} uniformly and exchange π(i) and π(j). Let Mutx be
the mutation operator that consists of k+1 independent exchange operations,
where k is a Poisson distributed random variable with λ = 1. The positions
of exchange operations are assumed to be independent of all other preceding
events in the algorithm, besides that, all realizations of the random variable
k are mutually independent. The following tight bound is known.

Theorem 4 [19] For the (1+1)-EA using mutation operator Mutx and Φ(x) ≡
HAM(x), t(1+1)

n = Θ(n2 lnn).

It is easy to see from the proof in [19] that the same result applies to a
simplified mutation operator that makes only one exchange operation each
time it is called. Let us denote this operator by Mut1x. An analogous lower
bound holds for all mutation-based evolutionary algorithms using Mut1x:

11

Proposition 5 For any EA with reproduction operator Mut1x and Φ(x) ≡
HAM(x), tEAn = Ω(n2 lnn).

Proof. Note that for any i = 0, . . . , n − 1 whenever individual x is such
that Φ(x) = HAM(x) = i, the probability of increasing its fitness is at least
(n−i)/n2. Indeed, there are n−i elements at incorrect positions and if element
k is at position j 6= k, then element j also occupies an incorrect position.

However this situation corresponds to an ”underestimated” scenario where
each improvement of fitness equals 1 and always there is only one improv-
ing position to exchange with position j. In fact the fitness increments by 1
only when there are two fitness-increasing ways to substitute the element at
position j; otherwise the k-th element equals j and the fitness increases by 2.

In case n is even, the ”overestimated” scenario corresponds to an assumption
that the probability of a fitness-increasing mutation equals to its upper bound
2(n − i)/(n(n − 1)) but the fitness always increments by 2. This scenario
may be implemented with an ”artificial” mutation operator Mut′(x) which
returns a solution of fitness Φ(x) + 2, unless x is optimal, with probability
2(n− i)/(n(n−1)); otherwise Mut′(x) returns x. Operator Mut′(x) dominates
Mut(x) and the expected optimization time is

n(n− 1)
n/2−1∑
i=0

1

2(n− 2i)
= n(n− 1)H(n/2)/4, (6)

whereH(n) =
∑n
i=1 1/i is the n-th harmonic number, ln(n) ≤ H(n) ≤ ln(n) + 1.

In case n > 2 is odd, some fitness improvement of Mut′(x) should be odd as
well, so we can assume that the improvement equals 3 (rather than 2) when
Φ(x) = 0. This yields the expected optimization time:

n(n− 1)

2

(
1

n
+

1

n− 3
+

1

n− 5
+ . . .+

1

2

)
=
n(n− 1)

2

 1

n
+

bn/2c−1∑
i=1

1

2i

 .

In general, for Mut′ we have the expected (1+1)-EA optimization time t(1+1)′
n ≥

n(n−1)H(bn/2c−1)/4. Thus, t(1+1)′
n ≥ Ω(n2 lnn) but by Corollary 3 any EA

based on Mut1x has the hitting time for the optimum at least t(1+1)′
n . Q.E.D.

Now let us turn to the mutation operator Mutx.

Theorem 6 For any EA with mutation operator Mutx and Φ(x) ≡ HAM(x),
tEAn = Ω(n2 lnn).

Proof. Let us construct an artificial mutation operator Mut′′ that works as
k + 1 iterations of the (1+1)-EA with the operator Mut′ defined in the proof

12

of Proposition 5, and k is the same Poisson distributed random variable with
λ = 1, as used in the original operator Mutx (the source of randomness is the
same). Let t be the random number of calls to Mut′′, made in the (1+1)-EA
with mutation Mut′′) until it finds the optimum. This (1+1)-EA acts like the
(1+1)-EA with the operator Mut′ and the number of calls to Mut′ is equal to
t1 =

∑t
i=1(ki + 1), where ki is the i-th realization of the random variable k.

According to the Wald’s identity (see e.g. [8]), E[t1] = 2E[t] since E[ki+1] = 2.
By Theorem 4 we have E[t1] = Ω(n2 lnn), so the same holds for E[t].

To complete the proof we only need to show that Mut′′ dominates Mutx.
Indeed, it was shown that Mut′ dominates Mut1x. The operator Mutx can
be interpreted as a simple evolutionary algorithm, and operator Mut′′ can be
considered as the (1+1)-EA, both working with the same operator Mut1x for
the same (Poisson distributed) number of steps k, so the domination follows
by Theorem 1. Q.E.D.

4 Conclusion

We have compared the (1+1)-EA to other EAs and proved that under the
domination condition it is an optimal search technique with respect to prob-
ability of finding the solutions of sufficient quality after a given number of
iterations. In the case of domination, the (1+1)-EA is also preferable with
respect to the expected fitness at any iteration and the expected optimization
time. As shown in Section 3, in some cases these results allow to extend the
lower bounds on expected optimization time of the (1+1)-EA to a wider class
of EAs.

Acknowledgements

The authors thank Sergey Klokov for very helpful discussions.

References

[1] D. Aldous, U.U. Vazirani, “Go with the winners” algorithms, Proceedings of
FOCS 1994, 1994, 492–501.

[2] D.V. Arnold, H.-G. Beyer, Performance analysis of evolution strategies with
multi-recombination in high-dimensional lRn - search spaces disturbed by noise,
Theor. Comp. Sci. 289 (2001) 629–647.

[3] E. Balas, A sharp bound on the ratio between optimal integer and fractional
covers, Math. of Operat. Res. 9 (1984) 1–5.

13

[4] J. E. Beasley, P. C. Chu, A genetic algorithm for the set covering problem,
Europ. Journ. of Operat. Res. 94 (2) (1996) 394–404.

[5] H.-G. Beyer, The Theory of Evolution Strategies, Natural computing series,
Springer, Heidelberg, 2001.

[6] P.A. Borisovsky, A.V. Eremeev, A study on performance of the (1+1)-
evolutionary algorithm, in: K. De Jong, R. Poli, and J. Rowe (Eds.),
Foundations of Genetic Algorithms, 7, Morgan Kaufmann, San Francisco,
(2003), pp. 271–287.

[7] P.A. Borisovsky, M.S. Zavolovskaya, Experimental comparison of two
evolutionary algorithms for the independent set problem, in: S. Cagnoni et al.
(Eds.) Applications of evolutionary computing: Proc. of EvoWorkshops 2003,
Springer Verlag, LNCS 2611, (2003), pp. 154–164.

[8] A.A. Borovkov, Probability theory, Gordon and Breach, 1998.

[9] D.J. Daley, Stochastically monotone Markov chains.
Z. Wahrscheinlickeitstheorie und Verw. Gebiete. 10 (1968) 307–317.

[10] S. Droste, T. Jansen, K. Tinnefeld, I. Wegener, A new framework for the
valuation of algorithms for black-box optimization, in K. De Jong, R. Poli,
and J. Rowe, (Eds.) Foundations of Genetic Algorithms, 7, Morgan Kaufmann,
San Francisco, (2003), pp. 253–270.

[11] A.V. Eremeev, Modeling and analysis of genetic algorithm with tournament
selection, in C. Fonlupt et al (Eds.), Proc. of Artificial Evolution Conference
(AE’99), LNCS 1829, Springer Verlag, (2000), pp. 84–95.

[12] J. Holland, Adaptation in natural and artificial systems, University of Michigan
Press, 1975.

[13] T. Jansen, I. Wegener, On the utility of populations in evolutionary algorithms,
in Proc. of Genetic and Evolutionary Computation Conference (GECCO),
(2001), pp. 1034–1041.

[14] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science. 220 (1983) 671–680.

[15] J.R. Koza, Genetic programming: On the programming of computers by means
of natural selection, MIT Press, 1992.

[16] T. Lindvall, Lectures on the coupling method, Whiley, New York, 1992.

[17] I. Rechenberg, Evolutionsstrategie: Optimerung Technischer Systeme nach
Prinzipen der Biologischen Evolution, Formann-Holzboog Verlag, Stuttgart,
1973.

[18] G. Rudolph, Finite Markov chain results in evolutionary computation: A tour
d’horizon, Fundamenta Informaticae. 35 (1-4) (1998) 67–89.

[19] J. Scharnow, K. Tinnefeld, I.Wegener, The analysis of evolutionary algorithms
on sorting and shortest paths problems, Journ. Math. Mod. and Alg. 3 (2004)
349–366.

14

