
Temporal Bin Packing Problems with Placement
Constraints: MIP-Models and Complexity

P. Borisovsky1[0000−0003−2673−7644], A. Eremeev1[0000−0001−5289−7874],
A. Panin1[0000−0002−1844−6276], and M. Sakhno1[0000−0002−1844−6276]

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
pborisovsky@ofim.oscsbras.ru

eremeev@ofim.oscsbras.ru
aapanin1988@gmail.com

sakhno@ofim.oscsbras.ru

Abstract. In this paper, we investigate new problem statements, gen-
eralizing the Temporal Bin Packing Problem (TBPP) with possible ap-
plications in cloud computing. We suppose that items are organized into
batches. All items in the same batch are placed simultaneously. In cloud
computing, items correspond to virtual machines (VMs) and batches cor-
respond to user requests for VM placement. In addition, cloud users can
create placement groups consisting of VMs united by a single placement
constraint named cluster: at any moment in time, VMs from the same
placement group must be hosted on the same rack of servers. In this
paper, we consider servers as one-dimensional bins.
We investigate the computational complexity and inapproximability of
different formulations of the TBPP with cluster placement constraint
and suggest mixed integer programming models for them.

Keywords: Temporal Bin Packing · Placement groups · Virtual ma-
chines · Complexity · Inapproximability · MIP model.

1 Introduction

In the classical Bin Packing Problem (BPP) [11], a finite set of items should be
placed into the minimum number of identical bins. This problem arises mainly
when optimizing container filling and usage. A natural and relevant generaliza-
tion of BPP is the Temporal Bin Packing problem (TBPP) [2, 5, 6, 15, 17], which
is directly related to cloud computing where virtual machines (VMs) are placed
on servers. In cloud computing, decisions are made online. Each VM or item is
assigned a time interval. The left boundary of the interval represents the time
when it is placed or packed, and the right boundary represents the time when it
is deleted. The objective is to determine the minimum number of servers (bins)
required to host VMs throughout the entire planning horizon.

We investigate new problem statements generalizing TBPP and arising pri-
marily in cloud computing. A cloud has a hierarchical structure that basically
consists of regions, network zones, racks and servers. Note that in transportation



2 P. Borisovsky et al.

logistics a similar problem is known as a Multi-Level Bin Packing Problem [4].
For simplicity, in this study we consider the two-level hierarchy in which sets of
servers (bins) are united into racks. Items are organized into batches that corre-
spond to user requests for virtual machine placement. A user request occurs at
one time, so all virtual machines in the same request are placed at once. In addi-
tion, users can create placement groups consisting of virtual machines united by
a single placement rule (constraint) that reflects the dependency between VMs.
For example, certain types of applications such as high performance scientific
computing or big data processing have to be run on several VMs and produce
a large traffic between them and so require a high network bandwidth (such a
dependency is known as affinity) [3, 13, 18]. To reduce the latency, such VMs are
considered as a placement group, and at any moment in time, virtual machines
from the same placement group must be hosted on the same network domain
or even on the same rack. According to [14], this type of constraints is referred
to as cluster. Note that there are other forms of dependencies, for example if
some data has to be replicated in order to provide a fault tolerance then the
corresponding VMs must be placed on different network domains, but in this
papers, we concentrate only on the cluster constraints. In our problem settings,
input consists of batches of items. These items belong to groups that have the
cluster type constraint at the rack level. Each rack consists of a given number of
bins, see Fig. 1.

Fig. 1. Illustration of a feasible solution with respect to the cluster placement con-
straint. Here the lifetime of each VM is shown as an interval on time axis. Let the place-
ment groups be PG1={VM1,VM4}, PG2={VM2,VM3,VM5}, and PG3={VM6,VM7}.
Suppose VM1 and VM8 intersect in time. The crosses mark the racks where VM8 can
not be placed due to the cluster placement constraint, because it must be put together
with VM1.



Temporal Bin Packing Problems with Placement Constraints 3

A common approach to handle a large number of technical requirements and
preferences consists in development a multi-objective model, in which among the
minimization of active servers there are such additional criteria as power con-
sumption, resource wastage, network traffic, number of rejections and migrations
of virtual machines etc. [10, 16, 20]. Comprehensive surveys that cover these and
other technological and economical issues of virtual machines scheduling can be
found in [9, 12, 19]. In order to keep the models simple and to investigate certain
aspects individually, we restrict ourselves to the two VM placement scenarios.
In the first one, the set of virtual machines is given and the number of required
servers to pack all of them is to be minimized. In the second scenario, there are a
fixed number of servers and a sequence of requests, which must be fulfilled with-
out skips until the first placement failure. The goal is to maximize the number
of satisfied requests. This formulation can be useful for estimation of the time
moment when the datacenter needs to be expanded.

The main purpose of this study is to investigate the complexity of the problem
under different settings. Since the basic VM packing problem is a generalization
of the classic BPP it is clearly NP-hard. However, there could be particular
cases, in which this reasoning may be incorrect. For example, BPP considers
items of arbitrary sizes, but the cloud providers usually offer a limited set of
VM types, and it is proven in [8] that BPP with the limited number of item
types is polynomially solvable. We show that in presence of cluster constraints
the problem is NP-hard even for only one VM type. Besides, we consider other
practically interesting cases and prove that under certain settings the solutions
cannot be approximated with any ratio in polynomial time.

The paper is structured as follows. Section 2 contains detailed description of
problems under consideration, together with Mixed Integer Programming (MIP)
models for their solution. Section 3 shows different hardness and inapproxima-
bility results for formulations from Section 2. Concluding remarks are given in
Section 4.

2 Problem Statements and MIP Formulations

Let a set of items I = {1, . . . , I} and rack capacity C (a number of bins in one
rack) be given. For each item i, the time interval [si, fi) is known. At the time si,
the item i must be placed into one of the bins and remain there until the time fi.
A set of event moments T can be defined as the combination of all left endpoints
of time intervals. We can assume T = {1, . . . , T} without loss of generality. Let
us denote the weight of item i by wi and the bin capacity by W .

The items are divided into groups. G = {0, . . . , G} is a set of groups of items.
The group g = 0 comprises all items without cluster placement constraints. For
each group g ≥ 1 and each event (or time) moment t, all items of g that exist in
this moment must be placed on the same rack.



4 P. Borisovsky et al.

2.1 Problem Statements of Minimizing the Number of Identical
Bins

Consider a problem formulation that requires all items to be placed in a minimum
number of identical bins, subject to placement constraints. Let R = {1, . . . , R}
be a sufficient set of racks to allocate all items (e.g., R = [I/C]). Each rack
contains exactly C bins. Let Br be a set of bins on a rack r. In addition, we
define the following auxiliary sets:
It = {i ∈ I|si ≤ t < fi}, where t ∈ T;
Igt = {i ∈ I|si ≤ t < fi and i belongs to g}, where t ∈ T and g ∈ G.

A Boolean variable zrb takes the value 1 if and only if the bin b of the rack
r is used to place items. A Boolean variable xrbi is equal to 1 if and only if the
item i is in the bin b of the rack r. To ensure that the placement constraints are
met, a Boolean variable argt is introduced. The variable takes the value 1 if and
only if the items of group g that exist at time t are placed in the rack r.

The problem of minimizing the number of bins can be written in terms of
mixed integer linear programming as follows.∑

r∈R

∑
b∈Br

zrb → min
x,z,a

(1)

∑
r∈R

∑
b∈Br

xrbi = 1, i ∈ I (2)

∑
i∈It

wixrbi ≤ W, r ∈ R; b ∈ Br; t ∈ T (3)

∑
i∈I

xrbi ≤ I × zrb, r ∈ R; b ∈ Br (4)

∑
b∈Br

∑
i∈Igt

xrbi = |Igt| × argt, r ∈ R; g ∈ G \ 0; t ∈ T (5)

Objective function (1) minimizes the number of bins used. Constraint (2)
ensures that all items are placed. Constraint (3) is a limit on the bin capacity.
Constraint (4) requires placing items only on used bins. Items from the same
group must be on the same rack. This follows from constraint (5).

In cloud computing, it is sometimes required to minimize the number of racks.
In this case, it is sufficient to replace the variable zrb with a Boolean variable zr
which takes the value 1 if and only if the rack r is used to place items. Then the
objective function (1) and constraint (4) are rewritten as follows:∑

r∈R

zr → min
x,z,a

∑
b∈Br

∑
i∈I

xrbi ≤ I × zr, r ∈ R



Temporal Bin Packing Problems with Placement Constraints 5

2.2 Problem Statement of Maximizing the Number of Batches

Unlike the previous problem, the batch maximization problem aggregates items
from the same left endpoint of the time interval into batches. Let a set of batches
U = {1, . . . , U} be given. In fact, in the problem statement under study, the set
of batches is equal to T. A Boolean matrix γ determines whether an item belongs
to a batch. The value of γui is 1 if and only if the item i belongs to the batch u.
The Boolean variable yu determines whether items from the batch u are packed
or not.

The batch maximization problem can be written in terms of mixed integer
linear programming as follows. ∑

u∈U

yu → max
x,y,a

(6)

yu−1 ≥ yu, 2 ≤ u ≤ U (7)

γui ×
∑
r∈R

∑
b∈Br

xrbi = yu, u ∈ U; i ∈ I (8)

∑
i∈It

wixrbi ≤ W, r ∈ R; b ∈ Br; t ∈ T (9)

∑
b∈Br

∑
i∈Igt

xrbi ≤ |Igt| × argt, r ∈ R; g ∈ G \ 0; t ∈ T (10)

Objective function (6) maximizes the number of batches packed. Constraint
(7) implies that batches are placed sequentially until the first placement failure.
Constraint (8) ensures that only whole batches are packed. It is not possible to
place only a part of a batch. Constraints (9) and (10) are similar to constraints
(3) and (5), respectively.

2.3 Allocation Rate Maximization

We have described mathematical models of the problems of minimizing the size
of the resource pool (number of bins or racks) and maximizing the number of
batches. Cloud computing also considers statements in which allocation rate is
maximized.

Definition 1 (Allocation rate). The allocation rate is defined as follows. For
a given set of items I and for each time moment t, let TWt be the total weight
consumed by the items of I and TW be the total capacity available in the resource
pool. Then the allocation rate is f = (maxt TWt)/TW .

In the problem (1)–(5), all items must be placed. Therefore, we can clearly
determine the time when the maximum allocation rate is reached:

t̄ = argmax
t

∑
i∈It

wi.



6 P. Borisovsky et al.

The total weight TWt̄ is equal to
∑

i∈It̄
wi. The statement of maximizing allo-

cation rate is obtained when replacing the objective function (1) by

TWt̄ /
∑
r∈R

∑
b∈Br

W × zrb → max
x,z,a

,

for the bins minimization case, and by

TWt̄ /
∑
r∈R

W × C × zr → max
x,z,a

,

for the racks minimization case
For the problem (6)–(10), the statement of maximizing allocation rate is

obtained when replacing the objective function (6) by∑
t∈T

qt ×
∑
i∈It

∑
r∈R

∑
b∈Br

wixrbi / (W ×R× C) → max
x,y,a,q

∑
t∈T

qt = 1,

where the Boolean variable qt defines the event moment at which the maximum
load of bins is reached.

3 Computational Complexity

In cloud computing, items are virtual machines. The users cannot define the
configuration (type) of the virtual machine themselves. Instead, they have to
choose from a set of configurations offered by the cloud provider. In practice,
TBPP with placement constraints has a limited variety of item types. In our
study, the type of an item is its weight. This paper explores two cases where the
number of item types is a part of the problem input and there is only one item
type, i.e., all items have the same weight.

3.1 The Number of Item Types as a Part of the Problem Input

The first statement corresponds to the scenario where items must be evenly dis-
tributed among bins. This approach is commonly used in partition problems.
The setting of the classical partition problem is given below.

Partition problem. [7]
Input: Finite set X of items, for each x ∈ X a weight ax ∈ Z+.
Question: Whether the set X can be partitioned into two subsets X1

and X2 such that
∑

x∈X1 ax =
∑

x∈X2 ax?

The presence of placement groups allows to use the Partition problem ideol-
ogy for complexity evaluation. This leads to the following statement.



Temporal Bin Packing Problems with Placement Constraints 7

Theorem 1. The problem of finding a feasible solution for the problem (1)–(5)
is NP-hard even in the case of one placement group, one event moment, and any
rack capacity C ≥ 2.

Proof. Consider an arbitrary instance of Partition problem. Let us construct an
instance of the problem (1)–(5) with one placement group and one event moment
as follows. The set of items I is exactly equivalent to the set of items X and the
weight of each item is equal to corresponding ax. The group g = 1 consists of all
items. The capacity of the bin is equal to half the total weight of all items. The
rack contains exactly two bins.

In a feasible solution of the constructed instance of the problem (1)–(5), the
placement group must be allocated entirely to a single rack. Therefore, the set of
items must be distributed into two bins, which corresponds to a positive answer
in the NP-complete Partition problem. ⊓⊔

Corollary 1. The problems of finding a feasible solution for the problems
(1)–(5) with the rack minimization criterion and the allocation rate maximiza-
tion criterion are NP-hard even in the case of one placement group and one
event moment.

Let us turn to the hardness of finding approximate solutions with guaranteed
approximation ratio ρ, which is also called the performance ratio [1]. Let F ∗

x be
the optimal value of the objective function for input x (initial data) and Fx(y)
be the value of the objective function for solution y obtained by an approximate
algorithm.

Definition 2. An approximate polynomial-time algorithm for a minimization
problem is called a ρ-approximation algorithm if it finds a solution y such that
Fx(y) ≤ ρF ∗

x for any input x.

Definition 3. An approximate polynomial-time algorithm for a maximization
problem is called a ρ-approximation algorithm if it finds a solution y such that
Fx(y) ≥ F ∗

x/ρ for any input x.

Implicitly the performance ratio ρ may be a function of x and we can
write ρ(x) to emphasize this. So, for an arbitrary minimization problem with
input x, the inequality F ∗

x ≥ Fx(y)
ρ(x) holds. In the case of maximization, we have

F ∗
x ≤ ρ(x)Fx(y).

Corollary 2. For the problem (1)–(5) with criteria of minimizing the number
of racks or bins and maximizing the allocation rate, there are no polynomial-time
approximation algorithms with any performance ratio, unless P = NP.

Corollary 2 follows from the fact that the approximation algorithm constructs
a feasible solution in polynomial time. Therefore, for the problem (1)–(5), there
are no algorithms satisfying Definition 2 or 3. The obtained results show that the



8 P. Borisovsky et al.

presence of placement constraints strongly complicates the classical Bin Packing-
type formulations. For the BPP, polynomial-time approximation algorithms with
performance ratio 3/2 exist [1].

Theorem 2. For the problem (6)–(10), there is no ρ-approximation algorithm
for any constant ρ unless P = NP.

Proof. Consider a decision problem P , in which there is a single time moment
and one batch consisting of n items is to be allocated on the given set of bins of
one large rack. No placement constraints are assumed. It is required to decide
whether all of the n items can be packed or not. This problem is NP-complete
since it is the corresponding decision problem of the BPP.

Assume for simplicity that ρ is integer. Consider the problem Q to maximize
the number of batches that represents ρ copies of problem P . Namely, the first
copy of the batch occupies only the time moment t = 1, similarly the second
copy of the batch exists in the time moment t = 2, and so on up to the moment
t = ρ. Since ρ is a constant, the size of Q is bounded by a polynomial in n.

Suppose there is a ρ-approximation algorithm for Q. If an instance of the
decision problem P has a positive answer, then all the batches of problem Q can
be packed, i.e. the optimal objective value of problem Q is F ∗ = ρ. In this case,
the approximation algorithm will find a solution with F ≥ F∗

ρ = 1, i.e. it will
pack the first batch and therefore solve P . On the other hand, if an instance of
problem P has the negative answer, then necessarily F = 0.

This allows to correctly decide the problem P in polynomial time, which is
impossible unless P = NP. ⊓⊔

Now let us consider the optimization problem, where the solution quality is
the maximum allocation rate of packed batches until the first placement failure.

Naturally, for a given solution, the allocation rate is calculated over the
batches that are packed in this solution. Note that the optimal solution to the
problem that maximizes the number of placed batches until the first failure is
an optimal solution to the problem of allocation rate maximization, but not vice
versa.

Denote the optimal allocation rate by f∗.

Theorem 3. For the problem (6)–(10) with allocation rate maximization crite-
rion, there is no R-approximation algorithm for any constant number of racks R
and any rack capacity C ≥ 2, unless P = NP.

Proof. Consider a decision problem P , in which there is a single time moment
and a set of n items to be allocated on the given set of bins of one rack. Only one
cluster placement group with all items is given. It is required to decide whether
all of the n items can be packed or not. This problem is NP-hard even if the total
demand of all n items equals to the total resource of a rack (i.e. the allocation
rate is equal to 1) because Partition problem reduces to it as a special case
(see Theorem 1). Let us limit ourselves to considering only such instances of the
problem P .



Temporal Bin Packing Problems with Placement Constraints 9

Consider an optimization problem Q that represents R copies of problem
P combined into R batches with different lifetime and different cluster groups,
assuming that the resource pool consists of R identical racks as in the problem P .
The first copy of items from P make up the first batch and the first group, the
second copy of items (indexed from n + 1 to 2n) makes up the second batch
and group, and so on, up to the batch R and group number R with item indices
n(R − 1) + 1, . . . , nR. Items of batch 1 exist at time period from 1 to R, items
of batch 2 exist at time period from 2 to R, etc. Items of batch R exist only at
time moment R. Since R is a constant, the size of Q is bounded by a polynomial
in n.

Suppose there is a R-approximation algorithm for Q. If an instance of the
decision problem P has a positive answer, then all the items of problem Q can
be packed, i.e. the allocation rate of problem Q is f∗ = 1. In this case, the R-
approximation algorithm will find a solution with an allocation rate f ≥ f∗

R = 1
R ,

i.e. it will pack at least the first batch. On the other hand, if an instance of
problem P has the negative answer, then necessarily f < 1

R .
This allows to correctly decide the problem P in polynomial time, which is

impossible unless P = NP. ⊓⊔

3.2 The Single Item Type Case

Theorems 1-3 above characterize the computational complexity of the problems
under study in the case of unlimited number of item types. The following state-
ment describes the complexity in the case of a single type (and also applies to
the cases with any number of types upper-bounded by a constant).

The proof of the following statement relies on a decision version of Graph
Coloring Problem.

K-coloring problem. [7]
Input: Graph G = (V,E) and integer K ≤ |V |.
A coloring of G into K colors is a partition of V into K independent
sets in G.
Question: Can we color G with no more than K colors?

Theorem 4. The problem (6)–(10) is NP-hard, even in the case of one item
type, any fixed number of racks R ≥ 3, any fixed rack capacity.

Proof. We show that the K-coloring problem with any fixed number of colors
K reduces in polynomial time to the problem (6)–(10) with the number of racks
R = K and one bin per rack.

Let us match placement groups subject to the cluster constraint with the
vertices of the given graph G = (V,E), |V | = n, |E| = m. In our reduction,
we will match utilized racks with colors in the K-coloring problem. Placing
items from a placement group on a rack will indicate coloring of a vertex that
corresponds to this group.



10 P. Borisovsky et al.

Let the bin capacity be 2n and the planning horizon T be {1, . . . ,m + 1}.
For each placement group corresponding to vertex i (i = 1, . . . , n), let’s add an
item with lifetime from 1 to m+1 and weight equal to 1. This way there will be
at least one item in each placement group. Since this item exists for the entire
time period, the other items in this placement group cannot be packed into the
other racks. Given the weights of these items, they can be packed into any bins,
even may all be packed into the same bin. For each edge eℓ = (i, j), ℓ = 1, . . . ,m,
let us add to the placement groups i, j, corresponding to the incident vertices,
n items of the same type as described above and set their start time to ℓ and
the end time to ℓ+1. Assume that each item makes up a separate batch, so the
total number of batches is U = nm+ n.

Figure 2 illustrates the reduction. For example, edge e1 = (V 1, V 2) corre-
sponds to four VMs in PG 1 and four VMs in PG 2. Since l = 1, they have the
time interval [1,2), i.e. they are active at time moment t = 1.

Fig. 2. Illustration of a comparison of instances and solutions of the graph coloring
problem and the problems under study in the case of one type of items and unit
capacity of racks. A graph with four vertices and five edges is colored in three colors.
Each vertex is assigned a placement group. Each color corresponds to a rack.



Temporal Bin Packing Problems with Placement Constraints 11

Note that for any edge eℓ = (i, j), items from different groups i, j cannot be
packed simultaneously on the same rack because together they require 2n + 2
resource units, while the rack capacity is only 2n. On the other hand, if two
vertices vi, vj of the graph can be colored in the same color then groups i, j can
be packed into the same rack, because groups i, j have no items living at the
same time except for long-lived items, one in each group, since there are no edges
between the vertices vi, vj in the graph.

The K-coloring problem corresponds one-to-one to the feasible solutions of
the constructed instance with R = K racks, and the number of the allocated
batches in such solutions is equal to the total number of batches U , i.e. the
objective value is equal to U in these solutions. Thus, answering the question:
“Is the optimum to the problem (6)–(10) equal to at least U batches?” allows
to solve the K-coloring problem. So the latter problem reduces to the problem
(6)–(10) with R = K in polynomial time.

Since the reduction yields only instances in which numerical parameters are
at most polynomial in n and the K-coloring problem is NP-complete [7] for any
fixed number of colors K ≥ 3, the considered problem is NP-hard. ⊓⊔

Corollary 3. The problem (1)–(5) is NP-hard with all optimization criteria
considered in the paper, even in the case of one item type, any maximum number
of racks R ≥ 3.

Proof. Placing items in no more than K racks corresponds to a positive answer
in the K-coloring problem. ⊓⊔

Corollary 4. For the problem (6)–(10) even in the case of one item type,
any maximum number of racks R ≥ 3, in the presence of cluster constraints,
there is no ρ-approximation algorithm for any constant ρ unless P = NP.

Proof. It is enough to assume that the problem P in the proof of Theorem 2
has cluster constraints and a given number of time moments T (and so it is
NP-complete), the problem Q is constructed as ρ copies of P with ρT moments,
then the rest of the proof can be reproduced. ⊓⊔

4 Conclusions

In this paper, we have shown that cluster placement constraint significantly
complicates the Temporal Bin Packing problem. These are the theoretical results,
but our preliminary experiments with modern MIP solvers also indicate that
TBPP with placement constraints requires much more CPU time and memory.
We expect that future research will provide a detailed experimental analysis
of the behaviour of MIP models and algorithms on such problems. Also, we
hope that certain special cases will be identified, where TBPP with placement
constraints admits constant-factor approximation algorithms.



12 P. Borisovsky et al.

Acknowledgement

The research was carried out in accordance with the state task of the IM SB
RAS (projects FWNF-2022-0020 and FWNF–2022–0019).

References

1. Ausiello, G., Crescenzi, P., Gambosi, G. et al., Complexity and Approxima-
tion: Combinatorial Optimization Problems and Their Approximability Properties.
Springer-Verlag, Berlin (1999)

2. de Cauwer, M., Mehta, D., O’Sullivan, B.: The temporal bin packing problem: An
application to workload management in data centres. In: 2016 IEEE 28th Inter-
national Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA,
pp. 157–164. IEEE (2016)

3. Chen, J., He Q., Ye, D., Chen, W. , Xiang, Y., Chiew, K., Zhu, L.: Joint affinity
aware grouping and virtual machine placement. Microprocessors and Microsystems
52, 365–380 (2017)

4. Chen, L., Tong, X., Yuan, M., Zeng, J., Chen, L: A Data-Driven Approach for
Multi-level Packing Problems in Manufacturing Industry. In: 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD ’19), An-
chorage, USA, pp. 1762–1770. ACM (2019)

5. Dell’Amico, M., Furini, F., Iori, M.: A branch-and-price algorithm for the temporal
bin packing problem. Computers & Operations Research. 114, 104825 (2020)

6. Furini, F., Shen, X.: Matheuristics for the temporal bin packing problem. In: Recent
Developments in Metaheuristics, vol. 62, pp. 333–345. Springer (2018)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co, San Francisco, Calif. (1990)

8. Goemans, M.X., Rothvoss, T.: Polynomiality for Bin Packing with a Constant
Number of Item Types. Journal of the ACM 67(6), 1–21 (2020)

9. Grushin, D.A., Kuzyurin, N.N.: On Effective Scheduling in Computing Clusters.
Programming and Computer Software 45(7), 398–404 (2019)

10. Guo, X.: Multi-objective task scheduling optimization in cloud computing based
on fuzzy self-defense algorithm. Alexandria Engineering Journal 60(6), 5603–5609
(2021)

11. Johnson, D. Near-optimal bin packing algorithms. Ph. D. Thesis, Dept. of Math-
ematics, M.I.T., Cambridge, MA (1973)

12. Mann, Z.: Allocation of Virtual Machines in Cloud Data Centers – A Survey of
Problem Models and Optimization Algorithms. ACM Computing Surveys 48(1),
1–34 (2015)

13. Pachorkar, N., Ingle, R.: Multi-dimensional Affinity Aware VM Placement Algo-
rithm in Cloud Computing. International Journal of Advanced Computer Research
3(4), 121–125 (2013)

14. Placement groups. (n.d.). Amazon Elastic Compute Cloud. URL:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-
groups.html

15. Ratushnyi, A., Kochetov, Y.: A column generation based heuristic for a temporal
bin packing problem. In: P. Pardalos, M. Khachay, A. Kazakov (eds). Mathemati-
cal Optimization Theory and Operations Research (MOTOR), LNCS, vol. 12755,
pp. 96–110. Springer, Cham (2021)



Temporal Bin Packing Problems with Placement Constraints 13

16. Regaieg, R., Koubàa, M., Osei-Opoku, E., Aguili, T.: Multi-objective mixed integer
linear programming model for VM placement to minimize resource wastage in a
heterogeneous cloud provider data center. In: 2018 Tenth International Conference
on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, pp. 401–
406. IEEE (2018)

17. Sakhno, M.: A grouping genetic algorithm for the temporal vector bin packing
problem. In: 19th International Asian School-Seminar on Optimization Problems
of Complex Systems (OPCS), pp. 94–99, IEEE (2023)

18. Su, K., Xu, L., Chen,C., Chen W., Wang,Z.: Affinity and Conflict-Aware Placement
of Virtual Machines in Heterogeneous Data Centers. In: 2015 IEEE Twelfth Inter-
national Symposium on Autonomous Decentralized Systems, Taichung, Taiwan,
pp. 289–294. IEEE (2015)

19. Talebian, H., Gani, A., Sookhak, M. et al.: Optimizing virtual machine placement
in IaaS data centers: taxonomy, review and open issues. Cluster Comput. 23, 837–
878 (2020)

20. Zheng, Q., Li, R., Li, X., Shah, N., Zhang, J., Tian, F., Chao, K.-M., Li, J.:
Virtual machine consolidated placement based on multi-objective biogeography-
based optimization. Future Generation Computer Systems 54, 95-122 (2016)


