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ABSTRACT
The heavy-tailed mutation operator, proposed by Doerr, Le, Makh-

mara, and Nguyen (2017) for evolutionary algorithms, is based on

the power-law assumption of mutation rate distribution. Here we

generalize the power-law assumption on the distribution function

of mutation rate. We show that upper bounds on the expected

optimization time of the (1 + (𝜆, 𝜆)) genetic algorithm obtained

by Antipov, Buzdalov and Doerr (2022) for the OneMax fitness

function do not only hold for power-law distribution of mutation

rate, but also for a wider class of distributions, defined in terms of

power-law constraints on the cumulative distribution function of

mutation rate. In particular, it is shown that, on this function class,

the sufficient conditions of Antipov, Buzdalov and Doerr (2022) on

the heavy-tailed mutation, ensuring the 𝑂 (𝑛) optimization time in

expectation, may be generalized as well. This optimization time is

known to be asymptotically faster than what can be achieved by

the (1 + (𝜆, 𝜆)) genetic algorithm with any static mutation rate.
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1 INTRODUCTION
The authors of [1] developed a genetic algorithm (1+ (𝜆, 𝜆)) GA for

pseudo-Boolean optimizationwith a crossover operator, eliminating

“unsuccessful” mutations. At each iteration of the (1 + (𝜆, 𝜆)) GA,
𝜆 offspring are generated from a single parent individual indepen-

dently of each other, at the Hamming distance ℓ from the parent. It

is assumed that ℓ ∼ Bin(𝑛, 𝑝), 𝑛 is the length of the bit-string and
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𝑝 is the mutation parameter. Next, the best individual in terms of

fitness is selected from these solutions and the crossover operator is

applied to it, given a crossover parameter 𝑐. With probability 𝑐 the

crossover operator uses bits from the best child, and with probabil-

ity 1−𝑐 , it uses bits from the parent solution. This way 𝜆 individuals

are created, and the best of the 𝜆 individuals is accepted as a new

parent, provided it is at least as fit as the previous parent.

In the present work, we consider the genetic algorithm (1 +
(𝜆, 𝜆)) GA from [1], combined with the fast mutation operator. In

[2] for (1 + (𝜆, 𝜆)) GA with fast mutation and a special random

choice of values 𝜆 and 𝑝 , obtained an upper bound for the opti-

mization time of an order 𝑂 (𝑛) in the case of OneMax. This is less

than the optimization time of (1 + (𝜆, 𝜆)) GA with any fixed prob-

ability of mutation. In this algorithm, both the population size 𝜆

and the parameter of fast mutation 𝑝 have a truncated power-law

distribution with upper bounds 𝜆 ≤ 𝑢𝑛 and 𝑝 ≤ 𝑢𝑛/𝑛 respectively.

The linear upper bound in [2] holds when the power exponent 𝛽

satisfies the inequalities 2 < 𝛽 < 3 and 𝑢𝑛 ≥ ln
1/(3−𝛽 ) 𝑛.

The main result of this work (Theorem 2) shows that upper

bounds for optimization time (1 + (𝜆, 𝜆)) GA, similar to those ob-

tained in [2], are valid not only in the case of truncated power-law

distributions of the random variables 𝜆 and 𝑝 , but also for a wider

class of distributions described in terms power-law constraints on

the cumulative distribution function. The linear upper bound we

obtained for the optimization time, similarly to the linear bound

from [2], is asymptotically smaller than the optimization time of

(1 + (𝜆, 𝜆)) GA for any static mutation parameter 𝑝 .

Let us denote N𝑚 := {𝑘 : 𝑘 ∈ N, 𝑘 ≤ 𝑚}, 𝑆 := {0, 1}𝑛 , |𝑆 | = 2
𝑛
.

Hamming norm and Hamming distance are |𝑥 | := ∑𝑛
𝑖=1 𝑥𝑖 and

|𝑥 −𝑦 | := ∑𝑛
𝑖=1 |𝑥𝑖 −𝑦𝑖 | for 𝑥,𝑦 ∈ 𝑆 . We denote a solution with ones

in all bits as 𝑥∗, and define 𝑍𝑠 := {𝑥 ∈ 𝑆 : |𝑥 − 𝑥∗ | = 𝑠}, which is

the set of solutions with exactly 𝑠 zeros, 𝑠 = 0, . . . , 𝑛.

In what follows, we consider and evaluate the characteristics of

the algorithm optimizing a fitness function 𝑓 from the OneMax

family, 𝑓 (𝑥 (𝑖)) = |𝑥 (𝑖) |. Let 𝜆(𝑛), 𝑛 ∈ N, be a set collectively

independent random variables (hereinafter, random variables are

referred to as r.v.) with P(𝜆(𝑛) = 𝑘) = 𝑝𝑛,𝑘 , where𝑢𝑛 ≤ 0.5𝑛, 𝑝𝑛,𝑘 =

0 for 𝑘 ∈ N∖N𝑢𝑛 and 𝑝𝑛,𝑢𝑛 > 0. The algorithm under consideration

coincides with Algorithm 1 from [2], but we depart from explicit

power expressions for 𝑝𝑛,𝑘 , instead we use only constraints on the

cumulative distribution function of 𝜆(𝑛).
Positive constants independent of 𝑛 we will denote as 𝐶 or 𝐶𝑖 .

Definition 1. For r.v. 𝜆(𝑛) we define the following conditions:
• A𝑐

2
if ∃𝐶 > 0 is such that E𝜆2 (𝑛) < 𝐶 .

• Apow

2
, if ∃𝐶1 (𝛽) > 0,𝐶2 (𝛽) > 0 and 𝑏0 > 0 such that for all
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sufficiently large 𝑛 ∈ N and 𝑏 ∈ [𝑏0, 𝑢𝑛] we have

E𝜆2 (𝑛) ≥ 𝐶1 (𝛽)𝑢3−𝛽𝑛 , P(𝑏/2 ≤ 𝜆(𝑛) ≤ 𝑏) ≥ 𝐶2 (𝛽)𝑏1−𝛽 ,

where 𝛽 ∈ (1, 3), 𝑢𝑛 ≤ 𝑛/2, and 𝑢𝑛 → ∞ as 𝑛 → ∞.

We generalize Theorems 5 and 6 [2], where 𝑢𝑛 → ∞ as 𝑛 → ∞,

P(𝜆(𝑛) = 𝑘) = 𝑝𝑛,𝑘 = 𝐶𝛽,𝑢𝑛𝑘
−𝛽 , 𝑘 ∈ N𝑢𝑛 , (1)

to wider classes of distributions of series of the r.v. 𝜆(𝑛), 𝑛 ∈ N.
ConditionA𝑐

2
means that E𝜆2 (𝑛) is uniformly bounded and there

are no other restrictions on 𝑝𝑛,𝑘 , which holds for 𝛽 > 3 in (1).

ConditionApow

2
implies that the second moment of the r.v. 𝜆(𝑛)

is unbounded as 𝑛 grows, and 0 < 3− 𝛽 < 2. It imposes restrictions

on the cumulative distribution function for r.v. 𝜆(𝑛) without fixation
of specific values for the probabilities 𝑝𝑛,𝑘 , some of which may even

equal to zero. Conditions (1) from [2] are more restrictive, since

they have the form 𝑝𝑛,𝑘 = 𝐶 (𝛽,𝑢𝑛)𝑘−𝛽 , 𝑘 ∈ N𝑢𝑛 , and 𝐶 (𝛽,𝑢𝑛) is
asymptotically constant for 𝑛 → ∞.

Let algorithm A denote the fast (1 + (𝜆, 𝜆)) GA from [2], where

instead of the truncated power-law distribution we use one of the

distributions satisfying the power-law constraints on the cumula-

tive distribution function from Definition 1.

2 THE MAIN RESULTS
Let ℓ𝜆 (𝑛) (𝑠) denote the number of iterations of Algorithm 1 from

[1] starting from an individual 𝑥 ∈ 𝑍𝑠 till the first improvement

of the fitness function for fixed 𝑛 and 𝜆(𝑛), and let us denote the

probability of improvement at the first iteration by 𝑝𝜆 (𝑛) (𝑠) =

P(ℓ𝜆 (𝑛) (𝑠) = 1). In the case of OneMax, the probabilities 𝑝𝜆 (𝑛) (𝑠)
are the same for all 𝑥 ∈ 𝑍𝑠 . Note that with a random choice of 𝜆(𝑛),
the r.v. ℓ𝜆 (𝑛) (𝑠) is not as important as the event {ℓ𝜆 (𝑛) (𝑠) = 1}.

By Lemma 7 from [1] with a fixed (not random) value 𝜆 = 𝜆(𝑛)
for any 𝑛, with mutation parameter 𝑝 = 𝜆(𝑛)/𝑛 and crossover

parameter 𝑐 = 1/𝜆(𝑛) and by Lemma 2 from [2] we obtain

𝑝𝜆 (𝑛) (𝑠) ≥ 𝐶1𝜆
2 (𝑛)𝑠/𝑛, at 𝜆2 (𝑛)𝑠/𝑛 < 1, (2)

𝑝𝜆 (𝑛) (𝑠) ≥ 𝐶2, with 𝜆2 (𝑛)𝑠/𝑛 ≥ 1. (3)

For the r.v. 𝜆(𝑛), we denote the average probability of fitness im-

provement in one iteration as 𝑝𝑛 (𝑠) := E𝜆 (𝑛)𝑝𝜆 (𝑛) (𝑠). The sequence
of iterations until the first improvement of the fitness function is a

sequence of independent trials up to the first success, with success

probabilities 𝑝𝑛 (𝑠). The number of elements ℓ𝑛 (𝑠) in this sequence

is geometrically distributed, P(ℓ𝑛 (𝑠) = 1) = 𝑝𝑛 (𝑠) and

Eℓ𝑛 (𝑠) = (1 − 𝑝𝑛 (𝑠))𝑝−1𝑛 (𝑠) + 1 = 𝑝−1𝑛 (𝑠) . (4)

Given some fixed𝑚0,𝑚1 ∈ N, let there exist 𝐶3 > 0 such that for

all 𝑛 ∈ N ∖ N𝑚1
the following inequalities hold

P(𝜆(𝑛) ∈ N𝑚0
) ≥ 𝐶3 . (5)

Markov inequality implies (5), if E𝜆(𝑛) ≤ 𝐶4, ∀𝑛 ∈ N for 𝐶4 < ∞.

If condition (5) is satisfied, then taking into account the relation

(4) for all 𝑛 ∈ N ∖ N𝑚1
and 𝑠 ∈ N𝑛 the following inequalities hold

𝑝𝑛 (𝑠) ≥ E𝜆 (𝑛) {𝑝𝜆 (𝑛) (𝑠); 𝜆(𝑛) ∈ N𝑚0
} ≥ 𝐶5𝑠

𝑛
, Eℓ𝑛 (𝑠) ≤

𝑛

𝐶6𝑠
. (6)

Let 𝜏𝑖 (𝑛) be the number of iterations until the first hitting 𝑥∗ if the
process starts from an individual 𝑥 (0) ∈ 𝑍𝑖 . According to the total

probability formula for 𝜏 (𝑛), which is the number of iterations until

the first hitting 𝑥∗, starting from a random individual 𝑥 (0) , we have

E𝜏 (𝑛) = 2
−𝑛

𝑛∑︁
𝑖=0

𝐶𝑖
𝑛E𝜏𝑖 (𝑛) ≤ 2

−𝑛
𝑛∑︁
𝑖=0

𝐶𝑖
𝑛

𝑖∑︁
𝑠=0

Eℓ𝑛 (𝑠)

= 2
−𝑛

(
𝑛𝜖∑︁
𝑠=1

+
𝑛∑︁

𝑠=𝑛𝜖+1

)
Eℓ𝑛 (𝑠)

𝑛∑︁
𝑖=𝑠

𝐶𝑖
𝑛 ≤

𝑛𝜖∑︁
𝑠=1

Eℓ𝑛 (𝑠) +𝐶5𝑛, (7)

where 𝜖 ∈ (0, 1) is an arbitrary fixed value.

Lemma 1. If 𝜆(𝑛) meets conditionApow

2
in the AlgorithmA, then

Eℓ𝑛 (𝑠) ≤
𝐶∗
1
𝑛

𝑢
3−𝛽
𝑛 · 𝑠

, if 𝑢2𝑛𝑠/𝑛 < 1, (8)

Eℓ𝑛 (𝑠) ≤
𝐶∗
2
𝑛

(𝑛/𝑠) (3−𝛽 )/2 · 𝑠
, if 𝑢2𝑛𝑠/𝑛 > 1. (9)

The theorem below follows from (6), (7), (8) and (9).

Theorem 1. The expected number of iterations till finding the
optimum of OneMax by Algorithm A satisfies the upper bounds

E𝜏 (𝑛) = 𝑂 (𝑛 ln𝑛), subject to A𝑐
2
; (10)

E𝜏 (𝑛) = 𝑂 (𝑛) +𝑂
(
𝑛 ln𝑛

𝑢
3−𝛽
𝑛

)
, subject to Apow

2
. (11)

Bound (11) differs from the analogous bound in Theorem 5 [2]

by the second term of (11). Theorem 5 [2] may be considered as a

special case of (11) when E𝜆(𝑛) < ∞ and 𝑢𝑛 ≥ ln
1/(3−𝛽 ) 𝑛, which

implies that 𝑢
𝛽−3
𝑛 ln𝑛 = 𝑂 (1) and the second term turns into 𝑂 (𝑛).

Let 𝑇 (𝑛) be the number of fitness evaluations before visiting

𝑥∗ ∈ {0, 1}𝑛 , and 𝑇𝑜𝑝 (𝑛) is the number of operations till this event.

If the number of fitness evaluations on each iteration does not

exceed 2𝜆(𝑛), then the number of operations depends on the im-

plementation of the computational algorithm. Let us assume that

there exists a function 𝜙 (𝜆(𝑛), 𝑛) such that the number of oper-

ations per iteration does not exceed 𝜙 (𝜆(𝑛), 𝑛). Denoting 𝜙𝑛 :=

E𝜆 (𝑛)𝜙 (𝜆(𝑛), 𝑛), we can prove that for some constant 𝐶∗
:

E𝑇 (𝑛) ≤ 𝐶∗E𝜏 (𝑛)E𝜆(𝑛), E𝑇𝑜𝑝 (𝑛) ≤ 𝐶∗E𝜏 (𝑛)𝜙𝑛 . (12)

This results in a generalization of Theorem 6 from [2].

Theorem 2. Bounds (12) on the average number of fitness evalu-
ations 𝑇 (𝑛) and the average number of operations 𝑇𝑜𝑝 (𝑛) are valid
for Algorithm A, optimizing OneMax fitness function.

Our result, e.g. is valid in the case of 𝑝𝑛,𝑘 = 𝐶 (∗) (𝛽,𝑢𝑛)𝑘1−𝛽 for

𝑘 ∈ N(3)
𝑢𝑛 and 𝑢𝑛 ∈ N(3)

, where in the accepted notation the set of

natural numbers is replaced by N(3) = {3ℓ , ℓ = 0, 1, 2, · · · }.
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