
Fitness Landscapes of Buffer Allocation Problem for

Production Lines with Unreliable Machines

Alexandre Dolguia, Anton V. Eremeevb, Vyatcheslav S. Sigaevc

aIMT Atlantique, LS2N-CNRS, Nantes, France
bSobolev Institute of mathematics, Omsk Department, Omsk, Russia

cAvtomatika-Servis LLC, Omsk, Russia

Abstract

We study the structural properties of the buffer allocation problem from the
fitness landscape perspective. We consider manufacturing flow lines with
series-parallel network structure. The machines are supposed to be unre-
liable, their time to failure and repair time are exponentially distributed.
Tentative solutions are evaluated by means of an approximate method based
on the Markov models aggregation. We carry out computational experiments
with local search and genetic algorithms in order to evaluate the fitness land-
scape properties of previously published instances and their modifications.
It turns out that the so-called ‘massif central’ or ‘big valley’ structure of the
fitness landscape is present but only partially: The fitness of local optima is
negatively correlated with the distance to the best found solution, yet the
set of local optima cannot be encompassed by a ball of relatively small size
with respect to the size of solution space. Moreover, we show that in many
problem instances, several clusters of local optima can be identified. The
performance of genetic algorithms is discussed with respect to population
clustering and the permanent usage of crossover is recommended.

Keywords: Production line, unreliable machines, buffer allocation,
series-parallel network, genetic algorithms, local optima.
PACS: 02.60.Pn
2000 MSC: 90C27, 90C59, 90B05

1. Introduction

Buffer capacity allocation problems arise in a wide range of flow line man-
ufacturing systems, such as transfer lines, flexible manufacturing or robotic

Preprint submitted to Computers and Operations Research September 3, 2024

assembly systems. The parts are accumulated in the intermediate buffers
when the downstream machines are less productive than the upstream ma-
chines. It is assumed that machines can break down and then go through
repair. When a breakdown occurs, the corresponding machine is not used in
production for a random repair time, which is independent of the total num-
ber of machines under repair. We assume that there is a sufficient number of
raw parts at the input buffer of the line and the finished parts depart from
the system immediately. One of the key performance measures of a flow-line
is the average production rate, i.e., the expected number of parts produced
per unit of time in the steady state regime. We also consider the inventory
cost and the buffers costs.

Evaluation of the manufacturing flow-line performance for given sizes of
buffers is studied by Coillard and Proth (1984), Dallery and Gershwin (1992),
Heavey et al. (1993), Tan and Gershwin (2009), Dolgui and Proth (2006) and
other authors. Markov models (see the recent review of Papadopoulos et al.
(2018)) and aggregation or decomposition techniques (see e.g. (Dallery et al.,
1988, 1989; Dolgui, 1993; Gershwin, 1993; Li and Meerkov, 2009)) are often
used to calculate the steady state throughput or other performance indicators
for the lines. Here we use the same assumptions as made by Coillard and
Proth (1984) (see the details in Subsection 2.1 below) and extend that line
of research.

Comprehensive surveys on buffer allocation in production lines may be
found in (Demir et al., 2014; Weiss et al., 2018). Buffer capacity allocation
using Markov models was studied by Smith and Daskalaki (1988), So (1997),
Gershwin and Schor (2000), Shi and Gershwin (2009), Kassoul et al. (2021)
and other authors. A promising approach, based on artificial neural networks
for modelling the throughput, has been recently proposed in (Dieleman et al.,
2023).

A large body of literature is devoted to buffer size optimization us-
ing the simulation-optimization approach. Usually, in case of simulation-
optimization it is necessary to iterate between optimization and simulation
procedures, see e.g. (Fu, 2002). However each call to a simulation procedure
usually requires much more CPU time compared to the evaluation by means
of a Markov model. The crucial problem in this framework is how to allocate
the computational resource over the tentative solutions, given the current
information about the problem. One of the best known methods developed
in this framework is the optimal computing budget allocation (Chen and Lee,
2011). An alternative approach in production lines simulation-optimization

2

uses the finite perturbation analysis (Suri, 1989) that provides a solution to
the design problem using a single long simulation of the system, which signif-
icantly reduces the computation time. During this simulation, the algorithm
obtains updated values of the considered performance measure at perturbed
solutions. The updated values of the performance measure are used to de-
fine the new search direction. Successful application of this approach may
be found e.g. in the genetic algorithm of Kassoul et al. (2022). A new
version of simulation-optimization approach may be found in (Alfieri et al.,
2020), where the buffer allocation problem is approximated by means of a
large-scale mathematical programming model. The approximation consists
in modelling the queues with temporal lags which allows to avoid the loop be-
tween simulation and optimization modules. The buffer allocation methods,
based on such mathematical programming models, are beyond the scope of
the present paper, which is aimed at further development of the metaheuris-
tic methods for buffer allocation, where the properties of the so-called fitness
landscapes play an important role (Schiavinotto and Stützle, 2007; Stadler,
2002). Informally speaking, the fitness landscape describes the structure
of the neighborhood system and the fitness function, representing the opti-
mization criterion and problem constraints. This allows to focus the study
on the set of local optima of a given problem instance with respect to the
given neighborhood system. The constraints may be incorporated into the
fitness function as penalty terms.

The production line design and buffers usage policy may significantly in-
fluence performance characteristics of a line. In particular, the production
rate and expected inventory levels of the lines described above may signif-
icantly differ from those in production systems with rework loops (Biller
et al., 2010), merging and splitting topologies (Smith and Daskalaki, 1988),
production lines operating under an echelon buffer policy, and CONWIP
policies (Liberopoulos, 2020). These cases are beyond the scope of our pa-
per. Even the production lines, designed as we assume here, but with the
information blocking policy (Buzacott and Shantikumar, 1993) or random
processing time assumptions (Vouros and Papadopoulos, 1998), require sep-
arate studies, although such cases appear to be very similar in design.

In general, development and refining of buffer allocation algorithms is
crucial for researchers of the field. For example, introduction of optimization
software in PSA Peugeot Citroen for buffer allocation in production lines
and other design decisions (Patchong et al., 2003) caused significant finan-
cial results. The optimization tools provide a manager with the decision

3

support which takes into account multiple constraints and objectives so that
the insights about the most appropriate optimization algorithms and their
settings allow to go further than general managerial insights about buffer
allocation structures. The former is the main motivation of our research and
is complementary to the later.

1.1. Contribution of the paper

The computational experiments with local search and genetic algorithms
allowed us to evaluate the fitness landscape properties of buffer allocation
instances, including the ones based on the real-life data from Renault pro-
duction. It turned out that the well-known ‘massif central’ or ‘big valley’
structure (Boese et al., 1993) of the fitness landscape is present but only par-
tially: Fitness of the local optima is negatively correlated with the distance
to the best found solution, yet the set of local optima can not be encom-
passed by a ball of relatively small size with respect to the size of solution
space. Moreover, we show that in many problem instances, several clusters
of local optima can be identified. We also discuss the causes for problem
symmetries and their impact on local optima clustering. This analysis of the
fitness landscape leads to a better understanding of its geometric features
and gives insights about the most appropriate optimization algorithms and
their settings. In particular, in case of population clustering in genetic algo-
rithm for buffer allocation problem, permanent usage of crossover operator
is recommended.

To the best of our knowledge, this paper is the first detailed analysis of
fitness landscapes of buffers allocation problems in the literature. Previous
experimental studies of the fitness landscapes were mostly focused on com-
binatorial optimization problems, such as traveling salesman problem (Hains
et al., 2011), the graph bisection (Boese et al., 1993), flowshop schedul-
ing (Reeves, 1999), and recently have been extended to machine learning
and some other areas (Thomson et al., 2017; Rodrigues et al., 2022).

This paper is an extended version of the conference publication (Dol-
gui et al., 2022). In this version, a detailed analysis of performance of ge-
netic algorithm with respect to clustering of local optima is added. It allows
us to recommend permanent use of crossover when population clustering
emerges. More information on fitness landscapes of buffer allocation prob-
lem is provided in tables and figures, and the literature survey is significantly
extended.

4

2. Preliminaries

2.1. The Buffer Allocation Problem

In this paper, we consider the buffer allocation problem for lines with
a series-parallel structure. An example of such a line with a series-parallel
network of equipment is shown in Fig. 1, where M1, . . . ,M7 are machines and
B0, . . . , B5 are buffers.

B0 B1 B3

B2

B4 B5

M1 M3 M5 M7

M2 M4

M6

Figure 1: Example of a line with a series-parallel structure

We assume that a machine can be either operational or under repair. An
operational machine may be blocked in case the downstream buffer is full. It
may also be starved if there are no parts in the upstream buffer. Otherwise
operational machines are working. In what follows, m denotes the number
of machines in the system. A working machine i, i = 1, . . . ,m, is assumed to
have a constant cycle time Ci, so its average production rate is Ui = 1/Ci.

It is supposed that machines may break down only when they are working.
The time to fail and time to repair for each machine are assumed to be
random values with exponential distributions. Let T i

b denote the average time
till failure, and let λi = 1/T i

b be the failure rate for a machine i, i = 1, ...,m, if
this machine is working. Similarly, let T i

r and µi = 1/T i
r denote respectively

the time to repair and the repair rate for machine i, conditioned that this
machine is under repair. Given our assumptions, the system has the steady
state mode (see e.g. Sevast’yanov (1962)). The performance of the system
in this mode is the most important for applications.

Let hj be the capacity of buffer Bj, j = 1, . . . , n. Denote the vector
of decision variables as H = (h1, h2, . . . , hn) ∈ Zn

+, where Z+ is the set of
non-negative integers.

The optimization criterion used in this paper is the same as in Dolgui
et al. (2002):

maxϕ(H) := TamR(V (H))−Q(H)− J(H), (1)

where

5

• Tam is the amortization time of the line;

• V (H) is the average production rate (steady state throughput);

• R(V) is the revenue, assuming the production rate is equal to V ;

• J(H) is the cost of buffers configuration H;

• dj is the maximal admissible capacity of buffer Bj;

• Q(H) = c1q1(H) + . . .+ cnqn(H) is the average steady state inventory
cost, where qj(H) is the average steady state number of parts in buffer
Bj, for j = 1, . . . , n.

The function ϕ(H) has to be maximized, subject to the constraints h1 ≤
d1, h2 ≤ d2,. . . , hn ≤ dn, bounding the admissible buffer size. Functions
R(V) and J(H) are assumed to be monotone and non-decreasing. J(H) may
be a linear function, or e.g. a step-function to model some standard buffer
capacities, or may be a penalty function, imposing a penaly on solutions
where the total capacity of all buffers exceeds some upper bound.

Although production lines without buffers or infinite buffers may be ex-
actly described analytically, the lines with finite buffers are difficult to analyse
precisely (Buzacott and Shantikumar, 1993). In particular, exact computa-
tion of the production rate and inventory levels in a line with more than two
serial machines is problematic due to the exponential growth of the number of
states in the corresponding Markov model. Therefore, most of the techniques
developed for the analysis of such systems are based on analytical approxi-
mations or simulations. The analytical approximations are usually based on
the two-machine Markov models, and either aggregation (De Koster, 1987)
or decomposition (Dallery et al., 1989; Gershwin, 1987; Li, 2005; Diamantidis
et al., 2020; Alaouchiche et al., 2023) algorithms.

For analytical approximation, in this paper, we use the two-machine
Markov model, independently developed by Levin and Pasjko (1969), Dubois
and Forestier (1982) and Coillard and Proth (1984). Given a tentative buffer
allocation, the production rate is evaluated using the aggregation proce-
dure (Dolgui, 1993) which is similar to the procedures of Terracol and David
(1987) and Ancelin and Semery (1987). The aggregation algorithm con-
sists in recursive replacement of two adjacent machines by a single machine.
The parameters λ∗, µ∗, c∗ of each emerging machine are calculated from
Kolmogorov equations corresponding to the Markov model that describes

6

two machines in series or from a simple approximation that describes two
machines in parallel. After n iterations of such aggregation procedure the
system reduces to a single machine with parameters λ∗, µ∗, c∗ and the es-
timate of the overall production rate V (H) is given by c∗µ/(λ∗ + µ). The
steady state inventory level qi is found when the two-machine Markov model
is applied to eliminate a buffer i during the reduction procedure Dolgui et al.
(2002). This aggregation approach is sufficiently rapid for evaluation of
tentative buffer allocations in the optimization algorithms. Computational
experiments of Ancelin and Semery (1987) and Dolgui and Svirin (1995)
show that the production rate V (H) found by this method is within 95%
confidence interval of the simulation results in most of the cases. The esti-
mate for inventory level is rigorously established for the case of two-machine
lines (Dolgui et al., 2002), however for longer lines the precision of our aggre-
gation approach in computing q1(H), . . . , qn(H) may have a methodological
bias.

The buffer allocation problem is known to be NP hard as shown by Dolgui
et al. (2013, 2018) and therefore it features some properties of the well-
known combinatorial optimization problems. One of such properties is that
often it is easy to find a locally optimal solution (computable in polynomial
time w.r.t. the problem input size), although it is hard to find the global
optimum (requires exponential time in the worst case). Another important
property is that high quality (and sometimes optimal) solutions may be found
by means of problem decomposition into smaller subproblems and a proper
way of solving and combining the solutions from these subproblems. Recent
applications of the latter approach may be found in (Xi et al., 2022) and
references therein. However in this paper we focus only on the first approach.

2.2. Fitness Landscapes

Many heuristic search methods for hard combinatorial optimization prob-
lems are based on the local search. Typically, the search is focused on a
neighbourhood Nx of the current point x in the search space, and various
strategies can be used for deciding on whether or not to move to one of these
neighbours, and if so, to which. In practice, such methods quickly converge
to a local optimum, and the search must either begin again by starting from
a new point, or use some metaheuristic to guide the search into new areas.

It may be helpful to understand the structure of the so-called fitness
landscape of a given instance of the combinatorial optimization problem in
order to choose and to tune the metaheuristics for overcoming the low-quality

7

local optima and finding global solutions. Formally, a fitness landscape in
the case of an optimization problem max{ϕ(x) : x ∈ X} may be defined by
three ingredients (Stadler, 2002):

1. A search space X,

2. a family of neighborhoods {Nx}, whereNx ⊂ X is defined for all x ∈ X,

3. an objective function ϕ : X → R, (also called fitness function).

In the present paper, we assume that a neighborhood Nx, consists of all
buffer allocations, which differ by one unit in one of the buffers from the given
solution x. This definition is appropriate because the local search algorithms
considered here always stop in a solution, which can not be improved by a
move in such a neighborhood. For other versions of buffer allocation problems
and other local search algorithms it may be more appropriate to use different
definitions of a neighborhood, e.g. in the knapsack-type problem (Demir
et al., 2012), the neighborhood is defined by moving a unit of storage from
one buffer to another one.

Theoretical investigations of the capacity of metaheuristics to overcome
the low-quality local optima have been recently shed some light on this issue
(see e.g. Oliveto et al. (2018); Dang et al. (2021) and references therein),
however in order to apply these findings to practical optimization problems
one needs to perform a thorough analysis of the search space, which is a
costly procedure. An alternative approach consists in statistical analysis of
the outcomes of multiple restarts of a local search method, which may help
to draw some qualitative conclusions on how to design a metaheuristic for
the problem at hand (Boese et al., 1993; Thomson et al., 2017; Reeves and
Eremeev, 2004). In this paper, we use the approach of Boese et al. (1993)
to study the fitness landscape of buffer allocation problem and then perform
computational experiments with different versions of genetic algorithm.

2.3. Genetic Algorithms

Let us briefly describe the two versions of genetic algorithm (GA) pro-
posed in (Dolgui et al., 2002) for buffer allocation and the local optimization
heuristics used in it. The GAs in general belong to a family of heuristic
random search methods and based on the analogy of biological evolution.
The GAs process a population of individuals by means of random operators
that model mutation and crossover. Each individual of a population corre-
sponds to a tentative solution, which is coded by a fixed length genotype
string G, consisting of symbols, called genes. We consider GAs where after

8

crossover and mutation a new individual is processed by a local optimization
heuristic, and only then it may be added into a population. The GAs of this
type are also called memetic algorithms (Neri et al., 2012), These algorithms
could be also classified as hybrid genetic algorithms with Lamarckian learn-
ing, however, since we borrowed them from (Dolgui et al., 2002), where they
are called GAs, so keep calling them GAs to avoid a confusion.

Genotypes of the initial population are randomly generated according to
some a priori defined probability distribution. All individuals are evaluated
using the performance evaluation heuristic method from (Dolgui, 1993). The
objective function is usually called fitness function in GA literature. The
steady-state reproductive strategy is used here. According to this strategy, in
each iteration, a couple of new individuals is generated. The new genotypes
replace a couple of ‘unpromising’ individuals chosen in the population by
some heuristic rule (thus the population size M remains constant during
the run of a GA). For the stopping criterion, we use a given number of
GA iterations tmax or a given computation time. The best solution found is
returned as a result when a GA terminates.

The construction of a new pair of genotypes (offspring) starts with choos-
ing a pair of parents from the current population by means of a probabilistic
selection operator. Then the crossover operator replaces some genes of one
parent with the corresponding genes of the other. After crossover the strings
undergo mutation, where a randomly chosen subset of genes is randomly
altered.

Three versions of the GA, theGA0, GA1 andGA2 are considered. The dif-
ference between these algorithms is that in the GA0, an individual is inserted
into a population without any local optimization, while the GA1 and GA2 use
the local optimization procedures respectively LO1 or LO2, described below.

In this paper, we consider an encoding of buffer allocation, which consists
of n genes, and each gene contains the size of the corresponding buffer. Here
we denote the genotypes of current population P by G(1), G(2), . . . , G(M), and
G

(j)
i is the value of gene i (i.e. the size of buffer i) in genotype of individual j.
The genotypes of the initial population are randomly constructed with

the uniform distribution of each gene G
(j)
i over the set 0, 1, . . . , di, i = 1, .., n.

After that in GA1 and GA2 the genotypes are processed by the same local op-
timization heuristic as the one used for local optimization of solutions before
they are added into the population in each iteration of the GA (by iteration
we mean construction of a pair of new genotypes from two parent genotypes).

9

Local optimization heuristic LO1(G) aims to improve a given individual
G through incrementing or decrementing the size of each buffer by one. It
makes at most n first-improving steps of local search using the ball of radius 1
as a neighbourhood. The other local search heuristic LO2 has the following
outline.

Local optimization heuristic LO2(G)

1. Set f := ϕ(G)

2. For all i from 1 to n do:

2.1 Set h := Gi, δ := 1
2.2 Denote H(γ) := (G1, . . . , Gi−1, h+ γ,Gi+1, . . . , Gn)
2.3 If h− 1 ≥ 0 and ϕ(H(−1)) > ϕ(G) then set δ := −1
2.4 While 0 ≥ h+ δ ≥ di and ϕ(H(δ)) > ϕ(G) do

2.4.1 Set G := H(δ), set h := h+ δ

2.5 If ϕ(G) > f then go to step 1

3. Return G

In the procedure LO2, the size of each buffer is incremented or decre-
mented as long as this yields some improvement in the goal function. The
buffers are chosen for optimization in a random order, independently for each
call to local optimization procedure in the GA. Note that LO2 terminates in
a local optimum w.r.t. the neighborhood defined by a ball of radius 1.

The general scheme of the GA is as follows (in the case of GA0 the iden-
tity mapping on genotypes substitutes the LO procedure).

Genetic algorithm with local optimization procedure LO

1. For j := 1 to M do:

1.1 Generate a random genotype G
1.1 Set G(j) := G

2. For t := 1 to tmax do:

2.1 Select parent genotypes G(q) and G(r) using a selection operator
2.2 Produce the offspringG′ andG′′ fromG(q) andG(r) using crossover

operator
2.3 Compute G∗ := LO(Mut(G′))
2.4 If G∗ is already present in P , set G∗ := Mut(G∗)
2.5 Choose 1 ≥ k ≥ M such that ϕ(G(k)) = min1≥j≥M ϕ(G(j)) and if

ϕ(G(k)) ≤ ϕ(G∗) then set G(k) := G∗.

10

2.3 Compute G∗∗ := LO(Mut(G′))
2.4 If G∗∗ is already present in P , set G∗∗ := Mut(G∗∗)
2.5 Choose 1 ≥ k ≥ M such that ϕ(G(k)) = min1≥j≥M ϕ(G(j)) and if

ϕ(G(k)) ≤ ϕ(G∗∗) then set G(k) := G∗∗.

3. Return the best solution from P .

In step 2.1 we use the s-tournament selection operator which randomly
(with uniform distribution) chooses s individuals from current population
and selects the best one of them as a parent. The crossover operator in step
2.2 is implemented according to the standard one-point crossover scheme,
where a random position χ is chosen uniformly ranging from 1 to M , and
the resulting genotypes are formed from G(q) and G(r) as follows:

G′ = (G
(q)
1 , . . . , G

(q)
χ−1, G

(r)
χ , . . . , G

(r)
M), G′′ = (G

(r)
1 , . . . , G

(r)
χ−1, G

(q)
χ , . . . , G

(r)
M).

This operator is applied with a fixed probability Pcross, otherwise the parent
genotypes are copied to G′ and G′′ without any changes. The crossover is
able to combine substrings form parent genotypes, so that with some proba-
bility the substrings responsible for efficient functioning of a production line
in parent solutions may be inherited together in an offspring.

Given a genotypeG, the mutation operator produces a genotypeMut(G) =
(G1+ξ1, . . . , Gn+ξn), where ξi is an integer value, uniformly distributed from
max(−Gi,−δ) to min(di−Gi, δ). Parameter δ defines the amount of random
changes caused by the mutation and it is chosen experimentally.

2.4. ‘Big Valley’ or ‘Massif Central’ Local Optima Structures

In many combinatorial optimization problems, local optima of the ob-
jective function (or fitness) tend to be grouped in a ‘big valley’ (in the
case of minimization problems) or ‘massif central’ (in the case of maxi-
mization problems). This fitness landscape structure has been observed
e.g. in NK-landscapes (Stuart and Simon, 1987), in the traveling sales-
man problem (TSP) (Boese et al., 1993; Hains et al., 2011), in the graph
bisection (Boese et al., 1993), and flowshop scheduling (Reeves, 1999). More
precisely, the ‘big valley’ or ‘massif central’ is described by the following two
statements (Boese et al., 1993):

1. Values of the objective function in the local optima tend to deteriorate
with increasing distance to the global optimum (i.e. there is a correla-
tion of objective function in the local optima with the distance to the
global optimum).

11

2. Local optima are located relatively close both to each other and to the
global optimum (they are located in a ball, which is smaller than the
whole search space by several orders of magnitude).

The presence of such structure partly explains good performance of genetic
algorithms (GAs). If different local optima are found in the GA population
and the new solution is built by means of a crossover operator, then the intu-
ition suggests that such algorithm should have good chances to find the global
optimum. This is supported by the experimental studies, e.g. of Boese et al.
(1993); Hains et al. (2011). Note that while Hains et al. (2011) do observe
the ‘big valley’ in the TSP, they also notice multiple funnels, or clusters of
local optima in the fitness-distance plot, and study how the crossover com-
bines useful traits of solutions from different clusters. Another capacity of
crossover is demonstrated by the theoretical analysis in the case of the Jump
benchmark (see e.g. Dang et al. (2016)), and may be useful, when the global
optimum is relatively far from the set of high-quality local optima (i.e. the
second condition of the ‘big valley’ is not quite relevant). To sum up, iden-
tification of the ‘big valley’ / ‘massif central’ structure, or the absence of
such structure, is a good starting point for analysis of GA performance on a
fitness landscape.

In this paper, we are mostly interested with the instances where the ‘big
valley’ / ‘massif central’ is hardly applicable, in particular, the instances
where we see several clusters of high quality local optima or the best known
solution is relatively far from the nearest cluster of local optima. We study
how the clustered fitness-distance diagram corresponds to performance of
crossover-based GAs. Besides that, for some instances we describe the fea-
tures of production line, which correspond to different clusters of the local
optima.

3. Computational Experiments

3.1. Problem Instances Used in Computational Experiment

For computational experiments we use the following series of problems:

• The AS series consists of instances as.1-as.8 based on the lines 1,2,6,7,8
Ancelin and Semery (1987) with real data from Renault production. A
distinctive feature of lines 7 and 8 is the presence parallel sections (see
Figures 2, 3).

12

Table 1: Basic parameters of the series

Series Number of Lines Number of Machines Buffer sizes
AS, AS’ 5 4 – 14 0-2000

BN5, BN5’ 10 5 10
VP, VP’ 4 5 10

GSD’, GSP’ 3 7–12 50–500

• Instances bn5.1-bn5.10 of series BN consist of 10 lines from Dolgui et al.
(2002) with m = 5. There are two bottlenecks in each line. Here by
bottleneck we mean a line section of two relatively slow machines and
a buffer between them.

• Problems vp6.9-vp6.10, vp7.9-vp7.10 of series VP are defined on serial
five-machine lines of Vouros and Papadopoulos (1998). These prob-
lems are of knapsack type, where the amount of buffer space is limited
from above.

• Series AS’, BN’ and VP’ are identical to AS, BN and VP, except that
the inventory cost Q(H) is set to zero.

• Series GSD’, GSP’ are defined on the basis of seven, ten and twelve-
machine lines described in Gershwin and Schor (2000). Problems of
series GSD’ are of the knapsack type, where the amount of buffer space
is limited from above by the value from Gershwin and Schor (2000)
(they are called problems of dual type there). The optimization crite-
rion for problems in GSP’ series is formulated similarly to instances of
series AS (they correspond to the primal type problems in Gershwin
and Schor (2000)).

Basic parameters of these series are summarized in Table 1. More details
about the optimization criteria, parameters of machines and buffer limits
may be found in Section 1 of Supplementary Materials.

3.2. Testing the ‘Massif Central’/‘Big Valley’ Conjecture

In what follows, the distance to a global optimum or to the best known
solution will be calculated on the basis of the norm ℓ1, i.e. a distance between
any two vectors x, y is ||x − y||ℓ1 =

∑n
i=1 |xi − yi|. To verify the “massif

13

B0 B1 B2

B3

B4

B5

B6 B7 B8

M1 M2 M5 M7 M8

M6

M10

M3 M9

M4

Figure 2: Structure of line in instance as.7

B0 B1 B2 B3

B4

B5 B6 B7 B8

M1 M2 M3

M4

M5

M6

M7

M9

M8 M10

Figure 3: Structure of line in instance as.8

central” structure, we developed a method for counting the number of integer
points in the intersection of a given ball of norm ℓ1 with the parallelepiped
of the search space

X = {x ∈ Zn
+ | 0 ≤ xi ≤ di, i = 1, . . . , n}

of the buffer allocation problem whose faces are parallel to the coordi-
nate planes. The method is based on reduction of this counting problem
to a combinatorial formulation, using the generating functions as suggested
by Sachkov (1982). More details may be found in the appendix.

Series of experiments were carried out on the above mentioned instances
for verification of the ‘massif central’/‘big valley’ conjecture, when the ob-
jective function is defined by formula (1). To find a local optimum, we used
the local search algorithm denoted LSA. At each iteration, the LSA searches
through the neighborhood of radius 1 in norm ℓ1 around the current solu-
tion. If an improving feasible solution in terms of the objective function is
found in the neighborhood, then it becomes the new current solution. The
process continues as long as an improvement can be found. (This is the
termination condition of the LSA.) Starting from any feasible solution, the
LSA moves iteratively to a local optimum, i.e. a solution that does not have
an improving neighbour.

In each run, the local search algorithm starts at a randomly generated
solution H whose elements hi are chosen with the uniform distribution be-
tween 1 and di. This procedure was repeated 1000 times as in Boese et al.

14

Table 2: Evaluation of the ball encompassing local optima in series AS and AS’

Series AS Series AS’

instance |X| |Ω|
|X|

|Ω|
|X|

1 5.74E+05 0.51 0.66
2 9.47E+11 0.33 0.32
6 2.89E+22 0.51 0.68
7 9.75E+07 0.67 0.95
8 5.23E+08 0.00 0.00

Table 3: Evaluation of the ball encompassing local optima in series VP and VP’

VP VP’

instance |X| |Ω|
|X|

|Ω|
|X|

6.9 1.00E+04 0.61 0.61
6.10 1.46E+04 0.66 0.66
7.9 1.00E+04 0.74 0.74
7.10 1.46E+04 0.68 0.66

(1993). Based on this sample, we calculated the total number of admissible
solutions |Ω| in the minimal ball encompassing all the local optima found. In
our case, the ball was chosen in the norm ℓ1, centred in the best found local
optimum.

Tables 2-4 contain the cardinality of the entire search space X, and the
fraction of cardinality of Ω, computed as described above, to the cardinal-
ity of X. As can be seen from the tables, the second part of the ‘massif
central’/’big valley’ conjecture is not valid in this case. Note that in prob-
lem as.8, only one local optimum was found in all runs of the local search.
Therefore we exclude this problem from the subsequent analysis.

The first part of the ‘massif central’/‘big valley’ conjecture is about the
correlation ρ(φ(H ′), r(H ′, H∗)) of the value of objective function at local
optima φ(H ′) to the distance r(H ′, H∗) to a global optimum H∗. Our ex-
periments suggest that there is a negative correlation ρ, and all values of the
correlation are significantly different from 0. These correlation coefficients
are listed in Tables 5 and 6. The confidence intervals are computed with a
confidence level of 95% using Fisher’s z-transformation. The instance as.3 is

15

Table 4: Evaluation of the ball encompassing local optima in series BN and BN’

Series BN Series BN’

instance |X| |Ω|
|X|

|Ω|
|X|

1 1.94E+05 0.15 0.24
2 1.94E+05 0.03 0.00
3 1.94E+05 0.43 0.24
4 1.94E+05 0.10 0.00
5 1.94E+05 0.35 0.00
6 1.94E+05 0.35 0.24
7 1.94E+05 0.12 0.20
8 1.94E+05 0.01 0.26
9 1.94E+05 0.32 0.09
10 1.94E+05 0.00 0.00

not present in Table 5 because only one local optimum was found in it.
Figures 4 and 5 show the fitness-distance diagrams of local optima for

problems bn5.1 and as.6 which have large ratios |Ω|
|X| . In fitness-distance

diagrams, the vertical axis shows the value of objective function of a local
optimum, and the horizontal axis is the distance d (based on the ℓ1 norm)
to the best-known solution. Each point represents one or several local
optima with equal distance to the best-known solution and equal fitness
value. These figures demonstrate two ways the local optima may occupy a
large fraction of the search space in our experiments: (i) either with a non-
uniform structure which splits into several small clusters in the neighborhood
of the best known solution (e.g. as.6), or (ii) with the whole structure grouped
into several clusters and several separate local optima (e.g. bn5.1, bn5.3).

The buffer sizes in the best found local optimum and in a cluster of near-
optimal solutions for problem bn5.1 (this cluster is indicated by a box in
Figure 4) are presented in Table 7. The table shows that while the best
incumbent has most of the buffer space in the first and the last position
(next to the bottleneck machines), the solutions of the near-optimal cluster
have large buffers before the last position. A similar divergence in solutions
structure may be observed for the instance bn5.3 in Table 6 in Section 2
of Supplementary Materials. Our attempt to identify a structural difference
between the two clusters presented in Figure 6 did not lead to any conclusion
(all maximal buffer sizes were similar and all minimal buffer sizes were close

16

Table 5: Fitness-distance correlation for local optima in series AS, AS’, VP and VP’.
Column ρ contains the values of ρ(r(H ′, H∗), φ(H ′)). Column “conf. int.” contains the
95% confidence intervals.

instance Series AS Series AS’
ρ conf. int. ρ conf. int.

1 -0.8710 (-0.885,-0.855) -0.9053 (-0.916,-0.893)
2 -0.5085 (-0.553,-0.461) -0.3590 (-0.412,-0.304)
6 -0.5943 (-0.633,-0.553) -0.6081 (-0.646,-0.567)
7 -0.9306 (-0.938,-0.922) -0.9001 (-0.911,-0.888)

instance Series VP Series VP’
ρ conf. int. ρ conf. int.

6.9 -0.6706 (-0.703,-0.635) -0.6862 (-0.718,-0.652)
6.10 -0.7601 (-0.785,-0.733) -0.7695 (-0.794,-0.743)
7.9 -0.8732 (-0.887,-0.858) -0.8871 (-0.899,-0.873)
7.10 -0.8897 (-0.901,-0.876) -0.8599 (-0.875,-0.843)

Table 6: Fitness-distance correlation for local optima in series BN and BN’. Column
ρ contains the values of ρ(r(H ′, H∗), φ(H ′)). Column “conf. int.” contains the 95%
confidence intervals.

instance Series BN Series BN’
ρ conf. int. ρ conf. int.

1 -0.8562 (-0.872,-0.839) -0.9259 (-0.934,-0.917)
2 -0.9999 (-0.999,-0.999) — —
3 -0.8233 (-0.842,-0.802) -0.9745 (-0.977,-0.971)
4 -0.9999 (-0.999,-0.999) — —
5 -0.9765 (-0.979,-0.973) -0.9999 (-0.999,-0.999)
6 -0.8499 (-0.866,-0.832) -1.0000 (-1.000,-1.000)
7 -0.9959 (-0.996,-0.995) -0.9802 (-0.982,-0.978)
8 -1.0000 (-1.000,-1.000) -0.8576 (-0.873,-0.840)
9 -0.8529 (-0.870,-0.835) -0.9984 (-0.999,-0.998)

17

Table 7: Buffer sizes in local optima of bn5.1

best incumbent selected cluster
buffers value

min max
19 15 18
0 0 0
3 16 19
20 20 20

function value
21390.379 21283.109 21320.953

to zero).
The possible causes for emergence of clusters will be considered in more

detail in Subsection 3.4. Note that other problems of series BN5 and BN5’
contained at most two local optima, except for bn5.3 where 9 local optima
were found. Instances of series VP and VP’ contained hundreds of local
optima, structured as a single uniform cluster.

0 10 20 30 40
d

21100

21150

21200

21250

21300

21350

21400

(h
)

Figure 4: The set of local optima obtained in bn5.1. Results of 1000 runs of the local
search.

3.3. Aggregation vs Simulation

In order to estimate the precision of aggregation approach in evaluation of
the local optima quality, as an alternative to the aggregation, we consider the
simulation method based on Petri nets (Dolgui and Svirin, 1995). Although
this method is more time consuming, in principle it allows to approximate the

18

0 100 200 300 400
d

16000

16500

17000

17500

18000

18500

(h
)

local optima

Figure 5: The set of local optima obtained in as.6. Results of 1000 runs of the local search.

true production rate with any required precision, which follows from the ex-
istence of stationary distribution and the law of large numbers (Dolgui et al.,
2017). Our supplementary analysis on the set of local optima obtained in all
experiments with series AS shows that the throughput computed using the
simulation (with 105 independent simulation runs) deviated from the aggre-
gation result, on average by less than 6%. However, due to the plateaus of
the function R(V) (see Section 1 of Supplementary Materials), the effect of
these errors on the objective evaluations may be less than 6%. This is illus-
trated in the fitness-distance plot on Figure 6. Here the black dots represent
the local optima obtained in 300 independent runs of the local search on
as’.7, using aggregation approach (Dolgui, 1993) for fitness evaluation. The
grey dots represent the same set of solutions but with the objective function
calculated by means of simulation (averaged over 105 independent simulation
runs). It can be seen that the fitness based on the simulation is close to the
fitness based on the aggregation in this case.

3.4. Local Optima Clusters

It can be seen from the fitness-distance plots that in some problems the
entire set of local optima splits into clusters. Note that just because two
points are almost equally distant from the best-known solution does not mean
they are close to each other. In what follows, we do not mean clusters in
terms of Euclidean or some other distance on the search space, but in terms
of images of the local optima on the fitness-distance plot. Let us consider
the reasons which may cause such clustering.

19

0 10 20 30 40
d

10050

10100

10150

10200

10250

10300

10350

(h
)

simulation
aggregation

Figure 6: Local optima obtained in as’.7 using aggregation approach and the same solutions
re-evaluated with simulation. The black dots correspond to the aggregation approach, the
gray dots are from simulation.

3.4.1. Two-Machine Line Symmetry

One of the reasons for clustering effect is the two-machine line symme-
try. This property has been established by Levin and Pasjko (1969) for a
serial line, consisting of two machines and a buffer between them. If we
swap the parameters of the first and the second machine in two machines
and one buffer problem so that the input buffer of the line becomes its out-
put, and the output buffer becomes the input, then the line performance will
not change. Clustering of the optima in buffer allocation problems for lines
with n ≥ 3 buffers may occur as a consequence of the line symmetry effects
if a line aggregation algorithms like those from Ancelin and Semery (1987);
Dolgui (1993) are used to evaluate the line. Note that if such aggregation
procedures are used, then for any serial line, where all parameters of ma-
chines and buffers are symmetric about the centre of the line, the results of
evaluation will be identical, if the buffer sizes of any solution H are mapped
symmetrically about the centre of the line. This symmetry property may
lead to local optima clusters as illustrated by the following example.

Consider a three-machine serial line denoted t.1 with the parameters:
TO
i = TB

i = 1, i = 1, . . . , 3; U1 = 1, U2 = 0.5 , U3 = 1; dj = 4, cj = 0, j =
1, . . . , 2; Tam = 7000; J(H) = 50 ·(h1+h2); if V (H) < 2570 then R(V (H)) =
0.9 ·V (H), otherwise R(V (H)) = 2570. The set of global optima (see Fig. 7)
of this example splits into two clusters. The first cluster contains solutions
H1 = (1, 2) and H2 = (1, 3), and the second cluster has the solutions H3 =
(2, 1) and H4 = (3, 1).

20

Figure 7: The objective function for problem t.1

3.4.2. Bias Due to Different Reduction Sequences

The aggregation rules from (Dolgui, 1993) and Ancelin and Semery (1987)
are based on a simplifying assumption that two neighbouring machines may
be substituted by a single machine, which has the same average time to fail-
ure and average time to repair as the two-machine line consisting of the pair
of machines under consideration. Every time the bottleneck pair of machines
is chosen for aggregation, so the ordering of machines for aggregation, de-
pends on the buffers sizes. With different buffer allocations, the reduction
rules in the aggregation method may be applied to the machines in different
sequences, but different sequences have different precision in result, there-
fore the production rate estimation and the whole objective function may
be given a bias, depending on the reduction sequence. Thus different se-
quences of reduction rules may create different clusters of local optima as a
result of the methodological bias.

3.4.3. Parallel-Series Line Structure

Clustering effect is noticeable with parallel sections of production lines,
see e.g. the plot for as.7’ in Figure 6 above. This effect can be justified by
the fact that there are several paths in lines with a parallel structure from
start buffer to end buffer. If there are two parallel paths that are similar in
their network structure (machine parameters and their connections), then in
a local optimum some buffers on the first path may be given relatively large
sizes, and some buffers in the second one may have relatively small size.
However it is possible to obtain another local optimum of similar quality,
where the buffers of the first path are given small size and the buffers of
the second one are large. The two local optima would be located at a large

21

distance from each other in the search space, which may place them into
different clusters.

3.4.4. Population Clustering in Genetic Algorithms

Solution clustering plays an important role if it occurs in populations of
genetic algorithms (see e.g. Hains et al. (2011)). The goal of this subsection is
to study how the local optima clustering or partial satisfaction of the ‘massif
central’ conditions influences the performance of genetic algorithms described
in Subsection 2.3. In these experiments, the GAs have the following param-
eters: population size M = 50, tournament size s = 5, mutation parameter
δ = 5, crossover probability Pcross = 0.5, which were chosen in (Dolgui et al.,
2002) empirically on the basis of preliminary experiments.

Let us first consider the objective function including the inventory costs.
Figures 8 and 9 show the fitness-distance plots for populations of the GA0

after 1000 iterations for instances bn5.1 and as.6 respectively. Multiple clus-
ters are clearly present in both cases. Problem as.6 turns out to be the
hardest among the considered benchmarks, so it will be used as an illus-
trative example to compare different versions of the GA. Figure 10 shows
the fitness-distance plots for the GA with local optimization heuristic after
1000 iterations for the instance as.6. One can see the impact of the local
search usage in the GA: with this heuristic only the best solutions of the top
four clusters from Fig. 9 are present in Fig. 10. When the computation of
this GA continued up to 105 iterations, the whole population concentrated
in the near-optimal cluster, located within the distance at most 14 to the
best-known solution. Population clustering in vicinity of local optima was
also observed in the case of bn5.1 instance, see Fig. 11 (here the global opti-
mum is not found yet, but the GA individuals start exploring the cluster of
near-optimal solutions). A similar clustering was also observed in the case
of the objective function with zero inventory costs, see Fig. 12.

3.5. Improving the Performance of Clustered Populations

After falling into one of the clusters, a sequence of points generated by
a metaheuristic algorithm, based on the local search principles (simulated
annealing, tabu search, evolutionary algorithms etc.) usually remains within
the cluster until the end of the run. This type of behaviour may be mitigated
by the random restart procedures, sensitive to stagnation of the search pro-
cess (Eremeev, 2019; Hampson and Kibler, 1993), by more intense usage of
crossover and/or mutation (Dang et al., 2016; Doerr and Rajabi, 2023; Hains

22

Figure 8: Population of the GA0 at t = 1000 on instance bn5.1

Figure 9: Population of the GA0 at t = 1000 on instance as.6

Figure 10: Population of the GA2 at t = 1000 on instance as.6 (note that here the scale is
different from that in Figures 5 and 9)

et al., 2011; Rajabi and Witt, 2020) or by appropriate selection mechanism
in the case of non-elitist evolutionary algorithms (Dang et al., 2021; Lehre
and Qin, 2022).

Here we evaluate whether the crossover is helpful to overcome the gaps
between the clusters of local optima in the case of buffer allocation problem
(the global optimum being considered as a cluster of size 1). Although a
complete analysis of causes for efficiency of crossover is beyond the scope

23

0 10 20 30 40 50 60
d

19750

20000

20250

20500

20750

21000

21250

(h
)

local optima
GA2 individuals

Figure 11: Population of the GA2 at t = 1000 on instance bn5.1 and the set of local
optima

0 100 200 300 400
d

18000

18200

18400

18600

18800

19000

19200

(h
)

local optima
GA2 individuals

Figure 12: Population of the GA2 at iteration t = 1000 on instance as.6’ and the set of
local optima, the case of zero inventory costs.

of this paper, we have compared three settings of crossover probability for
GA1 and GA2, namely Pcross = 0, 0.5 and 1 on instances as.2, as.6, and as.7.
Figures 13 and 14 show the average solution quality on the output of GAs
after 3 · 106 fitness evaluations without the inventory cost and with it.

It can be seen that for the instances as.6 and as.6’, the setting Pcross = 1
gives the best results. Note that as.6 and as.6’ have the most non-uniform
fitness-distance diagrams in series AS and AS’. In the case of as.6 and as.6’,
the difference between the fitness on the output of GA2 with Pcross = 0 and
Pcross = 1 is statistically significant with level p < 0.05 (shown by the U-
test), while for the instances as.1, as.2, as.7, as.1’, as.2’, and as.7’, where

24

Table 8: results of experiments with and without crossover for GA1 for series GSP’ and
GSD’

instance obtained average value U-test
Pcross = 0 Pcross = 1 p-value

gsd’ 7 8183.572 8184.951 0.5533
gsd’ 10 555810.830 555853.039 0.3870
gsd’ 12 622172.286 622260.543 0.1768
gsp’ 7 6999917.673 6999917.810 1.33E-04
gsp’ 10 6999554.071 6999552.627 8.56E-03
gsp’ 12 7006138.988 7006453.218 8.10E-40

the local optima were shaped as a uniform structure, and the GA population
clustering was not observed, the usage of crossover did not make a statistically
significant difference.

On the series BN, the instance bn5.1, which has the largest ratio |Ω|
|X| (see

Table 4) and whose local optima structure splits into several small clusters
(see Figure 4), was the only case where the usage of was associated with
statistically significant difference in U-test (p < 0.05).

Similar results have been observed on series GSP’ and GSD’, see Tables 8
and 9. These tables present the average fitness obtained in 300 runs of the
GAs with the same settings as in the experiments above. Again, as seen from
Table 9, the crossover improves the average fitness obtained, and difference
between the fitness on the output of GA2 with Pcross = 0 and Pcross = 1 is
statistically significant with level p < 0.05 on all instances, except for gsd’ 7.
Note that most of the fitness-distance diagrams of these instances either show
a large gap between the best-found local optimum and the nearest cluster,
or show several clusters of high-quality local optima with negative fitness-
distance correlation, with the exception for the diagram of gsd’ 7 (see Figures
9-14 of the supplementary materials). The results of the GA1 in Table 8 are
not so conclusive, probably due to a different interaction of the crossover
with another local search procedure.

We conjecture that this behaviour is based on the same role of crossover
as discussed in (Dang et al., 2016) where it was demonstrated that crossover
can improve the GA performance, combining useful traits of distant local
optima from one cluster and thus producing a globally optimal offspring at
a significant distance from the cluster where the population is concentrated.

25

Table 9: results of experiments with and without crossover for GA2 for series GSP’ and
GSD’

instance obtained average fitness U-test
Pcross = 0 Pcross = 1 p-value

gsd’ 7 8179.7893 8182.234 0.1819
gsd’ 10 556676.734 556806.290 4.78E-08
gsd’ 12 623000.641 623188.267 5.94E-24
gsp’ 7 6999917.813 6999917.933 5.64E-06
gsp’ 10 6999555.995 6999558.587 4.77E-05
gsp’ 12 7006514.089 7006538.53 1.59E-36

Another reason for the improved results with Pcross = 1 in our experi-
ments could be that some instances just require greater difference between
the offspring and parents, which may be obtained by a greater intensity of
mutation without a crossover. In order to exclude this option, we performed
additional experiments where the mutation rate was optimized specifically
for bn5.1 and as.6, which resulted in settings δ = 3 and δ = 8 respectively.
So only the case of as.6 with δ > 5 required further consideration. A new
experiment with δ = 8 for comparison of GA2 with Pcross = 0 and Pcross = 1
on as.6 indicated a statistically significant difference in fitness of the obtained
results, and an advantage of Pcross = 1 in average fitness. These additional
experiments support our conjecture about the positive effect of crossover in
GA2.

Figure 13: Average fitness after 3·106 tentative solutions on as.6’ (without inventory cost).

26

Figure 14: Average fitness after 3 · 106 tentative solutions with inventory cost.

4. Conclusions

The present paper extends the research on buffer allocation problems
from the fitness landscape prospective, based on the production system as-
sumptions of Coillard and Proth (1984). On the basis of computational
experiments we have shown that the ‘massif central’ structure is present in
the buffer allocation problem, but only in part: While the negative correla-
tion between the objective function in local optima and their distance to the
global solution is present, yet the concentration of all local optima in a tiny
fraction of the search space is not confirmed.

The observed structures of fitness landscape appear to be similar to those
in (Hains et al., 2011), and the crossover operator helps the GA2 from (Dol-
gui et al., 2002) to locate the high quality local optima in hard instances
of buffer allocation problem. We study how the clustered fitness-distance
diagram corresponds to performance of crossover-based GAs. For some prob-
lem instances we describe the features of production line, which correspond
to different clusters of the local optima.

In view of the experimental results from Section 3.5 we suggest that the
genetic algorithm GA2 is used with crossover probability Pcross = 1. We
conjecture that if the knowledge of the problem symmetries or population
clustering is built into the GA operators, this will simplify the transition
between clusters and improve the GA performance on buffer allocation prob-
lems.

We expect that the main observations presented in this paper will hold
true for a number of resource allocation problems of similar kind in other
areas. In particular, the buffer allocation problems with information block-
ing (Buzacott and Shantikumar, 1993) which emerge in the information pro-
cessing systems optimization as well as in optimization of transportation sys-
tems with unreliable communications, may have a similar fitness landscape
structure as discussed in this paper, and therefore may be treated efficiently

27

by the similar optimization algorithms. The fitness landscape properties
of buffer allocation problems for other practically valuable production line
designs and buffer usage policies, such as production systems with rework
loops, merging and splitting, require further investigation.

Data Availability Statement

The data and software that support the findings of this study are openly
available at github:
https://github.com/DES2023/GeneticAlgorithm.git
https://github.com/DES2023/LocalSearch.git
https://github.com/DES2023/Problems.git

Acknowledgements

The authors are grateful to Dr Jean-Marie Proth for attracting their
attention to buffer allocation problem and for his helpful comments at the
initial stage of this research.

The computations were performed using the server of Omsk Department
of Sobolev Institute of Mathematics.

Disclosure

No potential conflict of interest was reported by the authors.

Funding

A. Dolgui was supported by the ANR (French national agency for scien-
tific research) project ANR-21-CE10-0019 “ReconfiDurable”. A.V. Eremeev
was supported by Russian Science Foundation grant 21-41-09017.

Appendix A.

This appendix presents the method for counting the number of integer
points in the intersection of a given ball of norm ℓ1 with a parallelepiped
whose faces are parallel to the coordinate planes, containing the centre of
the given ball. The method is based on reduction of this counting problem
to a combinatorial formulation, using the generating functions as suggested

28

by Sachkov (1982). Given a set of non-negative integers w1, . . . , wn, w
′
1, . . . , w

′
n,

let us define the set Ω as follows:

Ω = {x ∈ Zn : ∥x∥l1 ≤ r,−w′
j ≤ xj ≤ wj, j = 1, 2 . . . , n}. (A.1)

Our goal is to find the cardinality of Ω.
For any i ≥ 0 we can consider the set Ωi, which consists of the points

with norm ℓ1 equal to i, such that the component j of these points belongs
to the interval from wj to w′

j, i.e.

Ωi = {x ∈ Zn : ∥x∥l1 = i,−w′
j ≤ xj ≤ wj, j = 1, 2 . . . , n}. (A.2)

Let us consider a polynomial of the following form:

PW ′W (s, t) = Qw′
1w1

(s, t) · . . . ·Qw′
nwn(s, t), (A.3)

where W = w1 + w2 + . . .+ wn, W
′ = w′

1 + w′
2 + . . .+ w′

n and

Qw′w(s, t) = sw
′
+ sw

′−1 + . . .+ s2 + s+ 1 + t+ t2 + . . .+ tw−1 + tw (A.4)

for any w = wj, w
′ = w′

j, j = 1, . . . , n. Now PW ′W (s, t) may be written as
follows:

PW ′W (s, t) =

max(W,W ′)∑
i=0

i∑
j=0

bijs
i−jtj, (A.5)

where bij are the coefficients in the expansion of the polynomial PW ′W (s, t).
The following lemma allows to compute the size of set Ωi by means of the
coefficients bij.

Lemma Appendix A.1.

|Ωi| =
i∑

j=0

bij, i = 0, . . . ,max(W,W ′). (A.6)

Proof. Let us introduce the set Mij of all strings (z1, · · · , zn, y1, · · · , yn), such
that

1.
∑n

k=1 zk = i− j;

29

2.
∑n

k=1 yk = j;
3. if yk ̸= 0, then zk = 0, k = 1, . . . , n;
4. if zk ̸= 0, then yk = 0, k = 1, . . . , n;
5. zk ≤ nk, k = 1, . . . , n;
6. yk ≤ n′

k, k = 1, . . . , n.

Consider any coefficient bij in the expansion of the polynomial PW ′W (s, t).
All coefficients of the polynomial (A.4) are equal to 1, so bij equals to the
number of terms of the form sz1 . . . sznty1 . . . tyn with all possible combinations
z1 · · · zny1 · · · yn, that satisfy conditions (1)...(6) in the product (A.3) before
bringing similar, therefore bij = |Mij|.

Note that |Ωi| =
i∑

j=0

|Ωij|, where the set Ωij contains all points in Ωi, such

that the sum of negative coordinates equals j, i.e.

Ωij = {x ∈ Ωi :
∑

k:xk<0

|xk| = j}. (A.7)

Clearly, it suffices to prove that |Ωij| = |Mij| for all i = 0, . . . ,max(W,W ′), j =
0, . . . , i. Consider the mapping h : Ωij → Mij, which for any vector x assigns
the string h(x) = (z1(x) . . . zn(x), y1(x) . . . yn(x)), such that:

zk(x) =

{
0, if xk < 0
xk, if xk ≥ 0

, yk(x) =

{
0, if xk ≥ 0
−xk, if xk < 0

, k = 1, . . . , n.

Besides that, consider a mapping g = (g1, . . . , gn) : Mij → Ωij such that:

gk(z1 . . . zn, y1 . . . yn) =

{
zk, if zk ≥ 0
−yk, if yk > 0

, k = 1, . . . , n.

It is easy to see that both functions are injections.

Proposition Appendix A.2.

|Ω| =
r∑

i=0

i∑
j=0

bij. (A.8)

Proof. Note that the sets Ωi do not intersect by the definition. and Ω =
r⋃

i=0

Ωi, so by Lemma Appendix A.1 we conclude that |Ω| =
r∑

i=0

|Ωi| =

r∑
i=0

i∑
j=0

bij.

30

The time complexity of multiplication of polynomials Qw
′
jwj

(s, t), and

Qw
′
j+1wj+1

(s, t) is O(w
′
1w1w

′
2w2) for each j = 1, . . . , n− 1, therefore, counting

the number of integer points in the intersection of a given ball of radius r in
terms of norm ℓ1 with a parallelepiped {x : −w′

j ≤ xj ≤ wj, j = 1, 2 . . . , n}
takes O(nr4) time, which is practically acceptable for our problem instances.

References

Alaouchiche, Y., Ouazene, Y., Yalaoui, F., 2023. A fast and efficient analyt-
ical method for throughput evaluation of unreliable series-parallel produc-
tion lines.

Alfieri, A., Matta, A., Pastore, E., 2020. The time buffer
approximated buffer allocation problem: A row–column genera-
tion approach. Computers & Operations Research 115, 104835.
doi:https://doi.org/10.1016/j.cor.2019.104835.

Ancelin, B., Semery, A., 1987. Calcul de la productivité d’une ligne integrée
de fabrication. RAIRO-Autom. Prod. Inf. 21, 209–238.

Biller, S., Li, J., Marin, S., Meerkov, S., Zhang, L., 2010. Bottlenecks in
bernoulli serial lines with rework. Automation Science and Engineering,
IEEE Transactions on 7, 208 – 217. doi:10.1109/TASE.2009.2023463.

Boese, K., Kahng, A., Muddu, S., 1993. On the big valley and adaptive
multi-start for discrete global optimizations. Technical report,UCLA CS
Department, TR-930015 .

Buzacott, J.A., Shantikumar, J.G., 1993. Stochastic Models of Manufactur-
ing Systems. Prentice-Hall, Upper Saddle River, NJ.

Chen, C.H., Lee, L.H., 2011. Stochastic simulation optimization. World
Scientific Publishing Co, Hackensack, NJ.

Coillard, P., Proth, J., 1984. Effet des stocks tampons dans une fabrica-
tion en ligne. Revue Belge de Statistique, d’Informatique et de Recherche
Opéationnelle 24 (2), 3–27.

Dallery, Y., David, R., Xie, X., 1988. An efficient algorithm for analysis of
transfer lines with unreliable machines and finite buffers. lIE Transactions
20, 280–283.

31

Dallery, Y., David, R., Xie, X., 1989. Approximate analysis of transfer lines
with unreliable machines and finite buffers. IEEE Transactions on Auto-
matic Control 34, 943–953.

Dallery, Y., Gershwin, S., 1992. Manufacturing flow line systems: a review
of models and analytical results. Queueing Syst. 12, 3–94.

Dang, D.C., Eremeev, A., Lehre, P.K., 2021. Non-elitist evolutionary algo-
rithms excel in fitness landscapes with sparse deceptive regions and dense
valleys, in: Proceedings of the Genetic and Evolutionary Computation
Conference, Association for Computing Machinery, New York, NY, USA.
pp. 1133–1141. doi:10.1145/3449639.3459398.

Dang, D.C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto,
P.S., Sudholt, D., Sutton, A.M., 2016. Escaping local optima with diversity
mechanisms and crossover, in: Proc. of the 2016 Genetic and Evolutionary
Computation Conference (GECCO 2016), ACM. pp. 645–652.

De Koster, M., 1987. Estimation of line efficiency by aggregation. Int. J.
Prod. Res. 25, 615–626.

Demir, L., Tunali, S., Eliiyi, D., 2012. An adaptive tabu search
approach for buffer allocation problem in unreliable non-homogenous
production lines. Computers & Operations Research 39, 1477–1486.
doi:10.1016/j.cor.2011.08.019.

Demir, L., Tunali, S., Eliiyi, D., 2014. The state of the art on buffer allocation
problem: A comprehensive survey. Journal of Intelligent Manufacturing
25, 371–392. doi:10.1007/s10845-012-0687-9.

Diamantidis, A., Lee, J.H., Papadopoulos, C.T., Li, J., Heavey, C., 2020. Per-
formance evaluation of flow lines with non-identical and unreliable parallel
machines and finite buffers. International Journal of Production Research
58, 3881–3904.

Dieleman, N., Berkhout, J., Heidergott, B., 2023. A neural network
approach to performance analysis of tandem lines: The value of an-
alytical knowledge. Computers & Operations Research 152, 106124.
doi:https://doi.org/10.1016/j.cor.2022.106124.

32

Doerr, B., Rajabi, A., 2023. Stagnation detection meets fast mutation. The-
oretical Computer Science 946, 113670.

Dolgui, A., 1993. Analyse des performances d’un atelier de production dis-
continue: méthode et logiciel. Research Report INRIA RR-1949.

Dolgui, A., Eremeev, A., Kolokolov, A., Sigaev, V., 2002. A genetic algorithm
for the allocation of buffer storage capacities in a production line with
unreliable machines. Journal of Mathematical Modelling and Algorithms
1, 89–104.

Dolgui, A., Eremeev, A., Kovalyov, M., Sigaev, V., 2018. Complexity of
Bi-objective Buffer Allocation Problem in Systems with Simple Structure,
in: Optimization Problems and Their Applications. Springer. volume 871
of Communications in Computer and Information Science, pp. 278–287.

Dolgui, A., Eremeev, A., Kovalyov, M.Y., Sigaev, V., 2013. Complexity of
Buffer Capacity Allocation Problems for Production Lines with Unreliable
Machines. Journal of Mathematical Modelling and Algorithms in Opera-
tions Research Volume 12, pp 155–165.

Dolgui, A., Eremeev, A., Sigaev, V., 2017. Analysis of a multicriterial op-
timization problem for bunker capacity in an industrial line. Automation
and Remote Control 78, 1276–1289.

Dolgui, A., Eremeev, A., Sigaev, V., 2022. On local optima distribution
in buffer allocation problem for production line with unreliable machines.
IFAC-PapersOnLine 55, 1092–1097. doi:10.1016/j.ifacol.2022.09.535. 10th
IFAC Conference on Manufacturing Modelling, Management and Control
MIM 2022.

Dolgui, A., Proth, J.M., 2006. Systèmes de production modernes. Tome 1:
Conception, gestion et optimisation. Hermès Science, London.

Dolgui, A., Svirin, Y., 1995. Models of evaluation of probabilistic productiv-
ity of automated technological complexes. Vesti Akademii Navuk Belarusi:
phisikatechnichnie navuki 1, 59–67.

Dubois, D., Forestier, J., 1982. Productivité et en-cours moyens d’un ensem-
ble de deux machines séparées par une zône de stockage. RAIRO Automa-
tique 16, 105–132.

33

Eremeev, A.V., 2019. A restarting rule based on the schnabel census for
genetic algorithms, in: Battiti, R., Brunato, M., Kotsireas, I., Pardalos,
P.M. (Eds.), Learning and Intelligent Optimization, Springer International
Publishing, Cham. pp. 337–351.

Fu, M., 2002. Feature article: Optimization for simulation: Theory vs. prac-
tice. INFORMS J. on Computing 14, 192–215.

Gershwin, S., 1987. An efficient decomposition method for the approximate
evaluation of tandem queues with finite storage space and blocking. Op-
erations Research 35 (2), 291–305.

Gershwin, S., 1993. Manufacturing Systems Engineering. Prentice Hall.

Gershwin, S., Schor, J., 2000. Efficient algorithms for buffer space allocation.
Annals of Operations Research 93, 117–144.

Hains, D., Whitley, L., Howe, A., 2011. Revisiting the big valley search space
structure in the TSP. Oper. Res. Soc. 62 , 305–312.

Hampson, S.E., Kibler, D.F., 1993. Large plateaus and plateau search in
boolean satisfiability problems: When to give up searching and start again,
in: Cliques, Coloring, and Satisfiability.

Heavey, C., Papadopoulos, H., Browne, J., 1993. The throughput rate of
multistation unreliable production lines. Europ. J. Oper. Res. 68, 69â–89.

Kassoul, K., Cheikhrouhou, N., Zufferey, N., 2021. Buffer allocation design
for unreliable production lines using genetic algorithm and finite pertur-
bation analysis. Int. J. Prod. Res. doi:10.1080/00207543.2021.1909169.
published online.

Kassoul, K., Cheikhrouhou, N., Zufferey, N., 2022. Buffer allocation design
for unreliable production lines using genetic algorithm and finite perturba-
tion analysis. International Journal of Production Research 60, 3001–3017.
doi:10.1080/00207543.2021.1909169.

Lehre, P.K., Qin, X., 2022. Self-adaptation via multi-objectivisation: A
theoretical study, in: Proceedings of the Genetic and Evolutionary Com-
putation Conference, Association for Computing Machinery, New York,
NY, USA. pp. 1417–1425. doi:10.1145/3512290.3528836.

34

Levin, A., Pasjko, N., 1969. Calculating the output of transfer lines. Stanki
i Instrument , 8–10.

Li, J., 2005. Overlapping decomposition: a system-theoretic method for mod-
eling and analysis of complex manufacturing systems. IEEE Transactions
on Automation Science and Engineering 2 (1), 40–53.

Li, J., Meerkov, S., 2009. Production Systems Engineering. Springer US.

Liberopoulos, G., 2020. Comparison of optimal buffer allocation in flow lines
under installation buffer, echelon buffer, and conwip policies. Flexible
Services and Manufacturing Journal 32. doi:10.1007/s10696-019-09341-y.

Neri, F., Cotta, C., Moscato, P., 2012. Handbook of memetic algorithms.
Springer, Berlin, Heidelberg.

Oliveto, P.S., Paixão, T., Heredia, J.P., Sudholt, D., Trubenová, B., 2018.
How to escape local optima in black box optimisation: When non-elitism
outperforms elitism. Algorithmica 80, 1604–1633. doi:10.1007/s00453-017-
0369-2.

Papadopoulos, C.T., Jingshan, L., O’Kelly, M.E., 2018. A classification and
review of timed markov models of manufacturing systems. Computers &
Industrial Engineering 128, 219–244.

Patchong, A., Lemoine, T., Kern, G., 2003. Improving car
body production at psa peugeot citroen. Interfaces 33, 36–49.
doi:10.1287/inte.33.1.36.12723.

Rajabi, A., Witt, C., 2020. Self-adjusting evolutionary algorithms for mul-
timodal optimization, in: Proceedings of the 2020 Genetic and Evolution-
ary Computation Conference, Association for Computing Machinery, New
York, NY, USA. pp. 1314–1322. doi:10.1145/3377930.3389833.

Reeves, C., 1999. Landscapes, operators and heuristic search. Ann. Oper.
Res. 86, 473–490.

Reeves, C., Eremeev, A., 2004. Statistical analysis of local search landscapes.
J. Oper. Res. Soc. 55, 687–693.

35

Rodrigues, N., Malan, K., Ochoa, G., Vanneschi, L., Silva, S., 2022.
Fitness landscape analysis of convolutional neural network architec-
tures for image classification. Information Sciences 609, 711–726.
doi:10.1016/j.ins.2022.07.040.

Sachkov, V., 1982. Introduction to combinatorial methods of discrete math-
ematics. M.: Science.

Schiavinotto, T., Stützle, T., 2007. A review of metrics on permutations for
search landscape analysis. Computers & Operations Research 34, 3143–
3153. doi:10.1016/j.cor.2005.11.022.

Sevast’yanov, B., 1962. The problem of how bunker capacity influences aver-
ages idle time for an automated line of machines. Teor. Veroyat. Primen.
7, 438–447.

Shi, C., Gershwin, S., 2009. An efficient buffer design algorithm for produc-
tion line profit maximization original research. International Journal of
Production Economics 122 (2), 725–740.

Smith, J., Daskalaki, S., 1988. Buffer space-allocation in automated assembly
lines. Operations Research 36, 343–358.

So, K., 1997. Optimal buffer allocation strategy for minimizing work-in-
process inventory in unpaced production lines. lIE Transactions 29, 81–88.

Stadler, P.F., 2002. Fitness landscapes. Springer Berlin Heidelberg, Berlin,
Heidelberg. pp. 183–204.

Stuart, K., Simon, L., 1987. Towards a general theory of adaptive walks on
rugged landscapes. Journal of Theoretical Biology 128, 11–45.

Suri, R., 1989. Perturbation analysis: The state of the art and research
issues explained via the gi/g/1 queue, in: Proceedings Of The IEEE, pp.
114–137.

Tan, B., Gershwin, S., 2009. Analysis of a general markovian two-stage
continuous-flow production system with a finite buffer. International Jour-
nal of Production Economics 120 (2), 327–339.

Terracol, C., David, R., 1987. Performance d’une ligne composée de machines
et de stocks intermédiaires. RAIRO-Autom. Prod. Inf. 21, 239–262.

36

Thomson, S.L., Daolio, F., Ochoa, G., 2017. Comparing communities of
optima with funnels in combinatorial fitness landscapes, in: Proceed-
ings of the Genetic and Evolutionary Computation Conference, Asso-
ciation for Computing Machinery, New York, NY, USA. pp. 377–384.
doi:10.1145/3071178.3071211.

Vouros, G., Papadopoulos, H., 1998. Buffer allocation in unreliable pro-
duction lines using a knowledge based system. Computers Ops. Res. 25,
883–891.

Weiss, S., Schwarz, J., Stolletz, R., 2018. The buffer allocation problem
in production lines: Formulations, solution methods, and instances. IIE
Transactions 51, 456–485. doi:10.1080/24725854.2018.1442031.

Xi, S., Smith, J.M., Chen, Q., Mao, N., Zhang, H., Yu, A., 2022. Simultane-
ous machine selection and buffer allocation in large unbalanced seriespar-
allel production lines. International Journal of Production Research 60,
2103–2125.

37

