CПИСОК НАУЧНЫХ ТРУДОВ
д.ф.-м.н. Задорина Александра Ивановича
1. МОНОГРАФИИ
- Блатов И.А., Добробог Н.В., Задорин А.И. Методы сплайн-функций для
задач с пограничным слоем. Самара, ПГУТИ, 2019, 258 с. ISBN 978-5-90429-92-0
pdf
- Задорин А.И. Разностные схемы для задач с пограничным слоем. // Учебное
пособие, Омск, ОмГУ, 2002, 118 c.
pdf
- Разностные схемы для нелинейных дифференциальных уравнений с малым
параметром в ограниченных и неограниченных областях // диссертация
на соискание ученой степени доктора физико-математических наук //
Омск, 2000.
pdf
eLIBRARY
2. Разработка разностных схем для сингулярно возмущенных задач
- Задорин А.И., Тиховская С.В. Разностная схема на равномерной сетке
для сингулярно возмущенной задачи Коши // Вестник НГУ. Серия: Математика,
механика, информатика, 2011, т. 11, вып. 3, с. 114-122.
pdf
Zadorin A.I., Tikhovskaya S.V. Difference scheme on a uniform grid
for the singularly perturbed Cauchy problem // Journal of
Mathematical Sciences, 2013, V. 195, № 6, p. 865-872.
DOI
- Задорин А.И., Тиховская С.В.
Анализ разностной схемы для сингулярно возмущенной задачи Коши
на сгущающейся сетке // Сибирский журнал вычислительной математики,
2011, т. 14, № 1, с. 47-57. pdf
Zadorin A.I., Tikhovskaya S.V. Analysis of a Difference Scheme for
a Singular Perturbation Cauchy Problem on Refined Grids // Numerical
Analysis and Applications, 2011, V. 4, № 1, p. 36-45.
DOI
- Zadorin A.I., Kharina O.V. Numerical Method for a Chemical Nonlinear
Reaction Boundary Value Problem // Lect. Notes in Computer Science,
2005, v. 3401, Springer, 583-589.
DOI
- Kandilarov J.D., Vulkov L.G., Zadorin A.I. A method of lines
approach to the numerical solution of singularly perturbed elliptic
problems. // Lecture Notes in Computer Science, v.1988, 2001,
pp. 451-458.
DOI
- Задорин А.И. Разностная схема для задачи со степенным погранслоем.
// Математические структуры и моделирование, 6, Омск, ОмГУ, 2000,
с. 36-42. pdf
- Задорин А.И. Численное решение краевой задачи для системы уравнений
с малым параметром. // Журнал вычисл. матем. и матем. физики, 1998,
т. 38, № 8, с. 1255-1265. pdf
Zadorin A.I. Numerical solution of a boundary value problem for a set
of equations with a small parameter. // Computational mathematics and
mathematical physics, 1998, V. 38, N 8, p. 1201-1211.
eLIBRARY
- Задорин А.И. Монотонная схема Самарского для обыкновенного уравнения
второго порядка с малым параметром в случае третьей краевой задачи. //
Вычислительные технологии, 1997, Т. 2, № 5, с. 35-45.
pdf
- Задорин А.И. Численное решение эллиптического уравнения с параболическим
погранслоем. // Моделирование в механике, 1993, т. 7 , № 1, c. 52- 59.
- Задорин А.И.Численное решение обыкновенного уравнения второго
порядка со слабо выраженным пограничным слоем. // Моделирование в
механике, 1991, 5: 1, 141-152.
- Задорин А.И., Игнатьев В.Н. Численное решение квазилинейного сингулярно
возмущенного уравнения второго порядка. // Журнал вычисл. матем. и матем.
физики, 1991, т. 31, № 1, с.157-160.
pdf
Zadorin A.I., Ignat'ev V.N. Numerical solution of a quasilinear
second-order singularly perturbed equation.// Comput. Math. Math. Phys.//
1991, 31, N 1, p. 112-116.
- Задорин А.И., Игнатьев В.Н. Разностная схема для нелинейного сингулярно
возмущенного уравнения второго порядка // Журнал вычисл. матем. и матем.
физики, 1990, т.29, N 9, с. 1425-1430. pdf
Zadorin A.I., Ignat'ev V.N. A difference scheme for a nonlinear
singularly perturbed second order equation. // Comput. Math. Math.
Phys., 1990, 30, N 5, c. 107-111.
- Задорин А.И. Численное решение квазилинейного уравнения с малым параметром.
// Моделирование в механике, 1989,т.3, N 2, c. 89-94.
- Задорин А.И. Разностная схема для самосопряженной сингулярно возмущенной
третьей краевой задачи // Моделирование в механике, 1989, т. 3, № 1 c. 77-82.
- Задорин А.И. Численное решение квазилинейного сингулярно возмущенного
уравнения. // Численные методы механики сплошной среды, Новосибирск,
1986, т.17, № 6, c. 35-44.
- Игнатьев В.Н., Задорин А.И. Численное решение сингулярно возмущенной
третьей краевой задачи. // Известия вузов, математика, 1986, № 7, с.
20-26. pdf
Ignat'ev V.N., Zadorin A.I. Numerical solution of the singularly
perturbed third boundary value problem for a second order ordinary
equation. // Sov. Math., 1986, 30, No.11, 25-32.
- Задорин А.И. О численном решении третьей краевой задачи для уравнения
с малым параметром. // Журнал вычислит. матем. и матем. физики, 1984,
т. 24, № 7, c. 1008-1015. pdf
Zadorin A.I. Numerical solution of the third boundary value problem
for an equation with a small parameter. // Comput. Math. Math. Phys.
24, 1984, № 4, 28-33.
- Задорин А.И. О существовании и единственности решения некоторых
разностных задач для квазилинейного обыкновенного дифференциального
уравнения с малым параметром // Численные методы механики сплошной
среды. Новосибирск, 1984, т.15, № 1, c. 33-44.
- Задорин А.И., Игнатьев В.Н. О численном решении уравнения с малым
параметром при старшей производной // Журнал вычислительной матем.
и матем. физики, 1983, т.23, № 3 , с. 620-628.
pdf
Zadorin A.I., Ignat'ev V.N. On the numerical solution of equations
with a small parameter in the highest derivative // Comput. Math.
Math. Phys. 1983, 23, № 3, 66-71.
- Задорин А.И. О выделении пограничного слоя и сочетании начальных и
краевых задач при решении сингулярно возмущенных уравнений. //
Численные методы механики сплошной среды. Новосибирск, 1983, т.14,
№ 1, с. 42-50.
Труды конференций
- Игнатьев В.Н., Задорин А.И., Щеглаков И.С. Об одном подходе к решению
уравнений с малым параметром.// Вычисления с разреженными матрицами,
ВЦ СО АН СССР, Новосибирск,1981 с. 62-72.
- Игнатьев В.Н., Задорин А.И. Регуляризация разностных схем с помощью
первого дифференциального приближения при численном решении уравнений
с малым параметром при старшей производной.// Сб. "Численные методы
и задачи оптимизации ", Томск, ТГУ, 1982, с.5-11.
- Задорин А.И., Игнатьев В.Н. О сходимости разностной схемы на неравномерной
сетке при наличии пограничного слоя. // Вариационно-разностные методы в
математической физике, Москва, ОВМ АН СССР, 1984, ч.2, 110-118.
- Zadorin A.I., Ignat'ev V.N. Convergence of a difference scheme on a
non-uniform network in the presence of a boundary layer. Variational-difference
methods in mathematical physics, 2, Collect. sci. Works, Moskva 1984, 110-119.
- Задорин А.И. Численное решение нелинейного уравнения с параболическим
погранслоем. // Исследования по статистической радиотехнике, дифференциальным
уравнениям и алгебре, труды ИИТПМ СО РАН, 1992, c. 92-100.
- Задорин А.И. Разностная схема для задачи со степенным погранслоем. //
Вычислительные технологии, 2001, т. 6, спец. выпуск, ч. 2, с. 290-297.
- Задорин А.И., Харина О.В. Численный метод для нелинейного уравнения с
пограничным слоем, соответствующим зоне химической реакции // Вычислительные
технологии, специальный выпуск, 2004, т. 9, ч. 2, с. 215-221.
- Zadorin A.I. Numerical solution of the nonlinear differential equation
with a small parameter on the infinite interval. // Numerical and Analytical
Methods for Convection-Dominated and Singularly Perturbed Problems. Eds. J.J.K.
Miller, G.I. Shishkin, L.G. Vulkov, 2000, Nova Science, New York, p. 259-265.
- Zadorin A.I. A Second Order Scheme for Nonlinear Singularly Perturbed
Two- point Boundary Value Problem. // Differential Equations and Mathematical
Modelling, Editor Blokhin A.M., Nova Science Publication, 2001.
- Задорин А.И. Численное решение нелинейного обыкновенного уравнения с
пограничным слоем, соответствующим зоне реакции. // Cб. "Фундаментальная и
прикладная математика ", ОмГУ, Омск, 1994, с. 107-111.
Препринты и авторефераты
- Игнатьев В.Н., Задорин А.И. Разностная схема для дифференциального
уравнения с малым параметром на неравномерной сетке.//Препринт ВЦ СО АН СССР,
1980, 229.
- Игнатьев В.Н., Задорин А.И. О плохой обусловленности при численном
решении уравнений с малым параметром. // Препринт ВЦ СО АН СССР, 1981, 84.
- Задорин А.И. Конечно-разностные методы решения уравнений с малым
параметром. // Автореферат диссертации на соиск. ученой степени к.ф.-м.н.,
ВЦ СО АН СССР, 1985.
- Игнатьев В. Н., Задорин А. И. О некоторых методах численного решения
нелинейной сингулярно-возмущенной краевой задачи. // Препринт ВЦ СО АН СССР,
Новосибирск, 1986, № 677.
- Задорин А.И. Разностная схема для обыкновенного сингулярно возмущенного
уравнения второго порядка. // Препринт ВЦ СО АН СССР, 1990, № 899.
- Задорин А.И.Численное решение краевой задачи для системы сингулярно
возмущенных уравнений. // Препринт ИИТПМ СО АН СССР, 1991, № 4.
- Задорин А.И. Численное решение краевой задачи для нелинейного сингулярно
возмущенного обыкновенного уравнения сведением к начальным задачам. // Препринт
ИИТПМ СО РАН, Омск, 1994.
- Задорин А.И. Разностные схемы для нелинейных дифференциальных уравнений
с малым параметром в ограниченных и неограниченных областях. // Автореферат
диссертации на соискание ученой степени доктора физико-математических наук,
Новосибирск, 32 с., 2000.
- Задорин А.И. Разностные схемы для нелинейных дифференциальных уравнений
с малым параметром в ограниченных и неограниченных областях. // Диссертация на
соискание ученой степени доктора физико- математических наук, Омск, 325 с.,
2000.
3. Задачи в неограниченной области
- Zadorin A.I. Reduction of a boundary value problem for a system of
diffusion-reaction equations to problem for a finite interval // Journal
of Physics: Conference Series, 2020, v. 1441, 012178.
DOI
- Zadorin A.I., Chekanov A.V. Numerical Method for Three-Point Vector
Difference Schemes on Infinite Interval // International Journal of
Numerical Analysis and Modeling, 2008, v. 5, № 2, p. 190-206.
pdf
- Задорин А.И., Харина О.В. Численный метод для системы линейных уравнений
второго порядка с малым параметром на полубесконечном интервале //
Сибирский журнал вычислительной математики, 2004, т. 7, № 2, с. 103-114.
pdf
- Задорин А.И., Харина О.В. Разностная схема для параболического уранения
с сосредоточенным источником на бесконечном интервале. // Вычислительные
технологии, 2003, т. 8 , специальный выпуск, ч. 2, с. 32-39.
- Задорин А.И., Чеканов А.В. Редукция векторной трехточечной схемы на
бесконечноминтервале к схеме с конечным числом узлов. // Вычислительные
технологии. – 2003, т. 8,- № 3, с. 54-70.
pdf
- Задорин А.И., Чеканов А.В. Редукция трехточечной разностной схемы на
бесконечном интервале к схеме с конечным числом узлов.// Сибирский журнал
вычислительной математики, 2002, т. 5, N 2, с. 149-161.
pdf
- Задорин А.И. Редукция нелинейной краевой задачи для системы уравнений
второго порядка с малым параметром с полубесконечного интервала к
конечному. // Сибирский математический журнал, 2001, т. 42, N 5, с.
1057-1066. pdf
Zadorin A.I. Reduction from a Semi-Infinite Interval to a Finite Interval
of a Nonlinear Boundary Value Problem for a System of Second-Order
Equations with a Small Parameter // Siberian Mathematical Journal,
2001, v. 42, № 5 , p. 884-892.
DOI
- Величко О.В., Задорин А.И. Численное решение системы уравнений с малым
параметром и точечным источником на бесконечном интервале. // Математические
структуры и моделирование, выпуск 7, Омск, ОмГУ, 2001, с. 17-27.
pdf
- Задорин А.И. Разностная схема для эллиптического уравнения со степенным
пограничным слоем в полосе. // Математические структуры и моделирование,
выпуск 5, Омск, ОмГУ, 2000, с. 11-17. pdf
- Величко О.В., Задорин А.И. Численное решение уравнения с точечным
источником на бесконечном интервале.// Математические структуры и
моделирование, выпуск 5, Омск, ОмГУ, 2000, с. 5-10.
pdf
- Задорин А.И. Перенос краевого условия из бесконечности в случае линейного
уравнения второго порядка с малым параметром. // Математические
структуры и моделирование, выпуск 1, Омск, ОмГУ, 1998, с. 13-19.
pdf
- Задорин А.И. Редукция краевой задачи для линейного векторного разностного
уравнения второго порядка к конечному числу узлов. // Журнал вычисл.
матем. и матем. физики, 2000, т. 40, № 4, с. 546-556.
pdf
Zadorin A.I. Reduction of a boundary value problem for a second-order
linear vector difference equation to a finite number of grid points. //
Computational mathematics and mathematical physics, 2000, V. 40, № 4,
p. 519-528.
- Задорин А.И. Трехточечная разностная схема на полубесконечном интервале.
// Вычислительные технологии, 2000, Т. 5, № 2, с. 46-55.
pdf
- Задорин А.И. Численное решение эллиптического уравнения с пограничными
слоями в полубесконечной полосе. // Вычислит. технологии, 1999, Т. 4,
N 1, с. 33-47. pdf
- Задорин А.И. Перенос краевого условия из бесконечности при численном
решении уравнений второго порядка с малым параметром. // Сибирский
журнал вычислительной математики, 1999, Т. 2, № 1, c. 21-35.
pdf
- Задорин А.И. Численное решение уравнения с малым параметром на
бесконечном интервале. // Журнал вычисл. матем. и матем. физики, 1998,
т. 38, № 10, 1671-1682. pdf
Zadorin A.I. Numerical solution of an equation with a small parameter
on an infinite interval. // Computational mathematics and mathematical
physics, 1998, V. 38, N 10, p. 1602-1614.
- Задорин А.И. Численное решение уравнения с малым параметром и точечным
источником на бесконечном интервале. // Сибирский журнал вычислительной
математики, 1998, т. 1, № 3, c. 249-260. pdf
Труды конференций и другие издания
- Harina O.V., Zadorin A.I. Numerical solution of a boundary value problem
for a system of equations with a small parameter on a half-infinite
interval. // Proceedings of the International Conference on Computational
Mathematics, Novosibirsk, 2002, P. 449-453.
- Задорин А.И. Численный метод для параболического уравнения с малым
параметром на полубесконечном интервале. // Вычислительные технологии,
2002, т. 7, совместный выпуск, часть 3, Вестник КазНУ, серия математика,
N 4 (32) с. 9-16.
- Zadorin A.I. A method of lines for an elliptic problem with boundary
layers along a strip. // Proceedings of the International Conference
on Computational Mathematics, Novosibirsk, 2002, p. 728-732.
- Chekanov A.V., Zadorin A.I. Numerical method for a singular perturbed
elliptic equation in a strip // Proceedings of the International
Conference on Computational Mathematics, Novosibirsk, Inst. of Comp.
Math. and Math. Geoph., 2004, Part 2, p. 818-823.
- Chekanov A.V., Zadorin A.I. Numerical method for a singular perturbed
elliptic equation in a strip // Proceedings of an International
Conference on Boundary and Interior Layers - Computational and Asymptotic
Methods, ONERA, Toulouse, 2004, Session 5, p. 1-6.
- Zadorin A.I. Numerical Method for Blasius Equation on an infinite
Interval.// Proceedings of an International Conference on Boundary
and Interior Layers - Computational and Asymptotic Methods,
Minisymposium Robust Numerical Methods for Problems with Layer
Phenomena and Applications, Georg-August University Gottingen, 2006, p. 1-7.
eLIBRARY
- Задорин А.И. Численный метод для задачи Блазиуса. // Труды международной
конференции "Вычислительные и информационные технологии в науке, технике
и образовании", том 1, Павлодар: ТОО НПФ "ЭКО", 2006, с. 501-510.
- Zadorin A.I. Method for a Singular Perturbed Parabolic Equation in a
Strip // Proceedings of Fourth. International conference on Finite
Difference Methods: Theory and Applications, August 26-29,2006,
Lozenetz, Bulgaria; Eds. I.Farago, P.Vabishchevitch and L.Vulkov,
Rousse Univ.Press, 2007, p. 345-351.
- Задорин А.И. Численный метод для параболического уравнения в полосе //
Труды седьмого всероссийского семинара “Сеточные методы для краевых
задач и приложения”, Казань, КГУ, 2007, с. 114-118.
4. Методы интерполяции функций с большими градиентами
- Задорин А.И., Задорин Н.А. Неполиномиальная интерполяция функций с
большими градиентами и ее применение // Журнал вычислительной
математики и математической физики, 2021, т. 61, № 2, с. 179--188.
DOI
- Zadorin A.I., Zadorin N.A. Non-Polynomial Interpolation of Functions
with Large Gradients and Its Application // Computational Mathematics
and Mathematical Physics, 2021, v. 61, № 2, p. 167-176.
DOI
- Tikhovskaya S.V., Zadorin A.I. Analysis of polynomial interpolation of
the function of two variables with large gradients in the parabolic
boundary layers // AIP Conference Proceedings, 2016, v. 1773, p.
100008-1–100008-9.
DOI
- Alexander Zadorin. Two-Dimensional Interpolation of Functions with Large
Gradients in Boundary Layers // Lecture Notes in Computer Science, v.
10187, Springer, 2017, p. 760–768.
DOI
- Задорин А.И., Задорин Н.А. Полиномиальная интерполяция функции двух
переменных с большими градиентами в пограничных слоях // Ученые записки
Казанского университета. Физико-математические науки, 2016, т. 158, кн.
1, с. 40-50. pdf
- Zadorin A.I. Interpolation Formulas for Functions with Large Gradients
in the Boundary Layer and their Application // Modeling and Analysis of
Information Systems, 2016, v. 23, № 3, p. 377-384.
pdf
- Задорин А.И. Интерполяционные формулы для функций с большими градиентами
в пограничных слоях // Прикладная математика и фундаментальная информатика,
2016, № 3, с. 11-15. pdf
- Задорин А.И. Интерполяция Лагранжа и формулы Ньютона-Котеса для функций
с погранслойной составляющей на кусочно-равномерных сетках // Сибирский
журнал вычислительной математики, 2015, т. 18, № 3, с. 289–303
pdf
Zadorin A.I. Lagrange interpolation and Newton-Cotes formulas for
functions with boundary layer components on piecewise-uniform grids //
Numerical Analysis and Applications 2015, v. 8, № 3, p. 235-247.
DOI
- Задорин А.И. Интерполяция функции двух переменных с большими градиентами
в пограничных слоях // Ученые записки Казанского университета.
Физико-математические науки, 2015, т. 157, кн. 2, с. 55-67.
pdf
Zadorin A.I. Interpolation of a Function of Two Variables with Large
Gradients in Boundary Layers // Lobachevskii Journal of Mathematics,
2016, v. 37, № 3, p. 349-359.
DOI
- Alexander Zadorin, The Analysis of Lagrange Interpolation for Functions
with a Boundary Layer Component // Lecture Notes in Computer Science,
v. 9045, Springer, 2015, p. 426–432.
DOI
- Zadorin A.I., Zadorin N.A. Interpolation formula for functions with a
boundary layer component and its application to derivatives calculation
// Сибирские электронные математические известия, 2012, т. 9, с. 445-455.
pdf
- Задорин А.И., Задорин Н.А. Сплайн-интерполяция на равномерной сетке
функции с погранслойной составляющей // Журнал вычислительной математики
и математической физики, 2010, т. 50, № 2, с. 221-233.
pdf
Zadorin A.I., Zadorin N.A. Spline Interpolation on a Uniform Grid for
Functions with a Boundary-Layer Component // Comput. Math. Math. Physics,
2010, v. 50, № 2, p. 211-223.
DOI
- Zadorin A.I. Interpolation Method for a Function with a Singular
Component // Lect. Notes in Computer Science, 2009, v. 5434, Springer-Verlag,
Berlin, p. 612-619.
DOI
- Задорин А.И. Метод интерполяции для функции двух переменных с погранслойной
составляющей // Вычислительные технологии, 2008, т. 13, № 3, с. 45-53.
pdf
- Задорин А.И. Метод интерполяции на сгущающейся сетке для функции с
погранслойной составляющей // Журнал вычислительной математики и
математической физики, 2008, т. 48, № 9, с. 1673-1684.
pdf
Zadorin A.I. Refined-Mesh Interpolation Method for Functions with a
Boundary-Layer Component // Comput. Math. Math. Physics, 2008, v. 48,
№ 9, p. 1634-1645.
DOI
- Задорин А.И. Метод интерполяции для задачи с пограничным слоем //
Сибирский журнал вычислительной математики, 2007, т. 10, № 3, с. 267-275.
pdf
Труды конференций
- Задорин А.И. Сплайн-интерполяция для функции с погранслойной составляющей
// Вычислительные технологии, 2008, т. 13, спец. выпуск 2, с. 135-139.
- Задорин А.И., Задорин Н.А. Интерполяция функций с учетом пограничного
слоя и ее применения // Сеточные методы для краевых задач и приложения.
Материалы Девятой Всероссийской конференции. – Казань: Отечество, 2012,
с. 147-151.
- Задорин А.И. Двумерные интерполяционные формулы для функций с большими
градиентами в пограничных слоях // Сеточные методы для краевых задач и
приложения. Материалы Одиннадцатой Международной конференции. Казань:
Казанский университет, 2016, с. 133–138.
- Задорин А.И. Сплайн-интерполяция при наличии пограничного слоя. //
Информационный бюллетень Омского научно-образовательного центра ОмГТУ и
ИМ СО РАН в области математики и информатики, 2017. Т.1, № 1, с. 35-38.
5. Двухсеточные методы для сингулярно возмущенных задач
- Tikhovskaya S.V., Zadorin A.I. A two-grid method with Richardson
extrapolation for a semilinear convection-diffusion problem //
AIP Conference Proceedings, 2015, v. 1684, p. 090007-1–090007-8.
DOI
- Zadorin A.I., Tikhovskaya S.V., Zadorin N.A. A two-grid method for
elliptic problem with boundary layers // Applied Numerical Mathematics,
2015, v. 93, p. 270-278.
DOI
- Задорин А.И., Тиховская С.В. Двухсеточный метод для нелинейной
сингулярно возмущенной краевой задачи на сетке Шишкина // Сибирский
журнал индустриальной математики, 2013, Т. 16, № 1, с. 42- 55.
pdf
eLIBRARY
- Задорин А.И., Тиховская С.В.. Решение нелинейного сингулярно
возмущенного уравнения второго порядка на основе схемы Самарского //
Сиб. журн. вычисл. математики, 2013, Т. 16, № 1, с. 11-25.
pdf
Zadorin A. I., Tikhovskaya S. V. Solving a Second-Order Nonlinear
Singular Perturbation Ordinary Differential Equation by a Samarskii
Scheme. // Numerical Analysis and Applications, 2013, V. 6, № 1, p. 9-23.
DOI
- Задорин А.И., Задорин Н.А. Интерполяция функций с погранслойными
составляющими и ее применение в двухсеточном методе // Сибирские
электронные математические известия, 2011, т. 8, с. 247-267.
pdf
- L.G. Vulkov, A.I. Zadorin Two-Grid Algorithms for an ordinary second
order equation with exponential boundary layer in the solution //
International Journal of Numerical Analysis and Modeling, 2010, v. 7,
№ 3, p. 580-592. pdf
- L.G. Vulkov, A.I. Zadorin A Two-Grid Algorithm for Solution of the
Difference Equations of a System of Singular Perturbed Semilinear
Equations // Lect. Notes in Computer Science, 2009, v. 5434,
Springer-Verlag, Berlin, p. 580-587.
DOI
- L.G. Vulkov, A.I. Zadorin Two-Grid Algorithms for the Solution of 2D
Semilinear Singularly Perturbed Convection-Diffusion Equations Using
an Exponential Finite Difference Scheme // American Institute of
Physics Conference Proceedings, v. 1186, 2009, p. 371-379.
DOI
- L.G. Vulkov, A.I. Zadorin Two-grid Interpolation Algorithms for
Difference Schemes of Exponential Type for Semilinear Diffusion
Convection-Dominated Equations // American Institute of Physics
Conference Proceedings, v. 1067, 2008, p. 284-292.
DOI
Труды конференций
- Задорин А.И., Задорин Н.А. Метод сплайн-интерполяции для функции с
погранслойной составляющей и его применение. // Труды Международной
конференции“ Вычислительная математика, дифференциальные уравнения,
информационные технологии”, Улан-Удэ, ВСГТУ, 2009, с. 42-49.
- Задорин А.И., Тиховская С.В. Двухсеточный метод на неравномерной сетке
для нелинейного сингулярно возмущенного уравнения второго порядка //
Сеточные методы для краевых задач и приложения. Материалы Восьмой
Всероссийской конференции, посвященной 80-летию со дня рождения А.Д.
Ляшко, Казань: Казанский университет, 2010, с. 210-216.
- Задорин А.И., Задорин Н.А. Двухсеточный метод решения линейного
эллиптического уравнения с регулярными пограничными слоями // Труды
Международной конференции "Современные проблемы прикладной математики
и механики: теория, эксперимент и практика", посвященной 90-летию со
дня рождения академика Н.Н. Яненко (Новосибирск, Россия, 30 мая - 4
июня 2011 г.). - No. гос. регистр. 0321101160, ФГУП НТЦ "Информрегистр".
- Новосибирск. – 2011, 6 стр.
eLIBRARY
6. Квадратурные формулы для функций с большими градиентами
- Zadorin A.I. Optimization of nodes of Newton-Cotes formulas in the
presence of an exponential boundary layer // Journal of Physics:
Conference Series, 2020, v. 1546, 012107.
DOI
- Zadorin A.I. New approaches to constructing quadrature formulas for
functions with large gradients // Journal of Physics: Conference Series,
2021, v. 1901, 012055.
DOI
- Задорин А.И. Кубатурные формулы для функций двух переменных с большими
градиентами в пограничных слоях // Сибирские электронные математические
известия, 2017, т. 14, с. 927-936. pdf
DOI
- Задорин А.И. Квадратурная формула Гаусса на кусочно-равномерной сетке
для функций с большими градиентами в пограничном слое // Сибирские
электронные математические известия, 2016, т. 13, с. 101-110.
pdf
DOI
Задорин А.И., Задорин Н.А. Аналог формул Ньютона-Котеса для численного
интегрирования функций с погранслойной составляющей // Журнал вычис.
математики и математической физики, 2016, т. 56, № 3, с. 368-376.
eLIBRARY
Zadorin A.I., Zadorin N.A. Analogue of Newton-Cotes Formulas for
Numerical Integration of Functions with a Boundary-Layer Component //
Computational Mathematics and Mathematical Physics, 2016, v. 56, № 3,
pp. 358-366.
DOI
- Задорин А.И. Модификация квадратурной формулы Эйлера для функций с
погранслойной составляющей // Журнал вычислительной математики и
матем. физики, 2014, т. 54, № 10, с. 1547-1556.
pdf
eLIBRARY
Zadorin A.I. Modification of the Euler Quadrature Formula for Functions
with a boundary-Layer Component // Computational Mathematics and
Mathematical Physics, 2014, v. 54, № 10, pp. 1489-1498.
DOI
- Задорин А.И., Задорин Н.А. Формула Симпсона и ее модификации для функции
с погранслойной составляющей // Сибирские электронные математические
известия, 2014, т. 11, с. 258-267. pdf
- Задорин А.И. Кубатурные формулы для функции двух переменных с
погранслойными составляющими // Журнал вычислительной математики и
математической физики 2013, т. 53, № 12, с. 51-61.
pdf
Zadorin A.I. Cubature Formulas for a Two-Variable Function with
Boundary-Layer Components // Computational Mathematics and Mathematical
Physics, 2013, v. 53, № 12, p. 1808-1818.
DOI
- Задорин А.И., Задорин Н.А. Аналог формулы Ньютона–Котеса с четырьмя
узлами для функции с погранслойной составляющей // Сиб. журн. вычисл.
математики, 2013, т. 16, № 4, с. 313–323.
pdf
Zadorin A. I., Zadorin N.A. An Analogue of the Four-Point Newton-Cotes
Formula for a Function with a boundary-Layer Component. // Numerical
Analysis and Applications, 2013, v 6, № 4, p. 268-278.
DOI
- Zadorin A., Zadorin N. Quadrature Formula with Five Nodes for Functions
with a Boundary Layer Component // Dimov I., I. Farago I., Vulkov L.
(Eds.): NAA 2012, LNCS 8236, pp. 540 - 546. Springer, Heidelberg, 2013.
DOI
- Задорин А.И., Задорин Н.А. Квадратурная формула Эйлера для функции с
погранслойной составляющей на кусочно-равномерной сетке // Сибирские
электронные математические известия, 2013, т. 10, с. 491-503.
pdf
- Задорин А.И., Задорин Н.А. Квадратурные формулы для функций с
погранслойной составляющей // Журнал вычислительной математики и
математической физики, 2011, т. 51, № 11 с. 1952-1962.
pdf
eLIBRARY
Zadorin A.I., Zadorin N.A. Quadrature formulas for functions with a
boundary-layer component // Computational Mathematics and Mathematical
Physics, 2011, v. 51, № 11, p. 1837-1846.
DOI
7. Сплайн-интерполяция функций с большими градиентами
- Блатов И.А., Задорин А.И., Китаева Е.В. Применение кубического сплайна
на сетке Бахвалова при наличии пограничного слоя // Журнал
вычислительной математики и математической физики, 2021, т. 61, № 12,
с. 46-64.
DOI
- Блатов И.А., Задорин А.И., Китаева Е.В. Применение обобщенного сплайна
для интерполяции функций с большими градиентами в пограничном слое //
Журнал вычислительной математики и математической физики, 2020, т. 60,
№ 3, с. 413-428.
DOI
- Blatov I.A., Zadorin A.I., Kitaeva E.V. Generalized Spline
Interpolation of Functions with Large Gradients in Boundary Layers //
Computational Mathematics and Mathematical Physics, 2020, v. 60, № 3,
p. 411-426
DOI
- Zadorin Alexander, Blatov Igor' Analogue of Cubic Spline for
Functions with Large Gradients in a Boundary Layer // Lecture Notes in
Computer Science, v. 11386, Springer, 2019, p. 654-662.
DOI
- Блатов И.А., Задорин А.И., Китаева Е.В. Аппроксимация функции и ее
производных на основе кубической сплайн-интерполяции при наличии
пограничного слоя // Журнал вычислительной математики и математической
физики, 2019, т. 59, № 3, с. 367-379.
DOI
- Blatov I.A., Zadorin A.I., Kitaeva E.V. Approximation of a Function
and Its Derivatives on the Basis of Cubic Spline Interpolation in the
Presence of a Boundary Layer // Computational Mathematics and Mathematical
Physics, 2019, v. 59, № 3, p. 343-354.
DOI
- Blatov I.A., Zadorin A.I., Kitaeva E.V. An application of the cubic
spline on Shishkin mesh for the approximation of a function and its
derivatives in the presence of a boundary layer // Journal of Physics:
Conference Series, 2019, v. 1210, 012017.
DOI
- Блатов И.А., Задорин А.И., Китаева Е.В. О равномерной по параметру
сходимости экспоненциальной сплайн-интерполяции при наличии пограничного
слоя // Журнал вычислительной математики и математической физики, 2018,
т. 58, № 3, с. 365-382.
eLIBRARY
Blatov I.A., Zadorin A.I., Kitaeva E.V. On the Parameter–Uniform
Convergence of Exponential Spline Interpolation in the Presence of a
Boundary Layer // Computational Mathematics and Mathematical Physics,
2018, v. 58, № 3, p. 348-363.
DOI
- Блатов И.А., Задорин А.И., Китаева Е.В. Об интерполяции параболическим
сплайном функций с большими градиентами в пограничном слое / Сибирский
математический журнал, 2017, т. 58, № 4, с. 745-760.
pdf
Blatov I.A., Zadorin A.I., Kitaeva E.V. Parabolic spline interpolation
for functions with large gradient in the boundary layer // Siberian
Mathematical Journal, 2017, V. 58, № 4, p. 578-590.
DOI
- Блатов И.А., Задорин А.И., Китаева Е.В. О равномерной сходимости
параболической сплайн-интерполяции на классе функций с большими
градиентами в пограничном слое // Сибирский журнал вычислительной
математики, 2017, т. 20, № 2, с. 131–144.
pdf
Blatov I.A., Zadorin A.I., Kitaeva E.V. On the uniform convergence of
parabolic spline interpolation on the class of functions with large
gradients in the boundary layer // Numerical Analysis and Applications
2017, v.10, № 2, p. 108-119.
DOI
- Блатов И.А., Задорин А.И., Китаева Е.В. Об интерполяции кубическими
сплайнами функций с большими градиентами в пограничном слое // Журнал
вычислительной математики и математической физики, 2017, т. 57, № 1, с. 9-28.
eLIBRARY
Blatov I.A., Zadorin A.I., Kitaeva E.V. Cubic Spline Interpolation of
Functions with High Gradients in Boundary Layers // Comput. Math. Math.
Physics, 2017, v. 57, № 1, p. 9-28.
DOI
- Blatov I.A., Kitaeva E.V., Zadorin A.I. On interpolation by cubic
splines of the functions with a boundary layers // CEUR Workshop
Proceedings, 2016, v. 1638, p. 515-520. pdf
- Zadorin A.I. Spline interpolation of functions with a boundary layer
component // International Journal of Numerical Analysis and Modeling,
series B, 2011, v. 2, № 2-3, p. 262-279. pdf
Труды конференций
- Задорин А.И., Кириенко А.С. Анализ кубических сплайнов для задачи с
пограничным слоем // Вычислительные технологии, 2008, т. 13, спец.
выпуск 2, с. 140-146.
- Zadorin A.I., Guryanova M.V. Analogue of a Cubic Spline for a Function
with a Boundary Layer Component // Proceedings of the Fifth Conference
on Finite Difference Methods: Theory and Applications, 2010. Rousse
University, 2011, p. 166-173.
- Задорин А.И. Аналог кубического сплайна для интерполяции функций с
погранслойной составляющей // Сеточные методы для краевых задач и
приложения. Материалы Десятой Международной конференции. – Казань:
Казанский университет, 2014. – С. 305 – 310.
- Блатов И.А., Задорин А.И., Китаева Е.В. Об интерполировании кубическими
сплайнами функций с пограничным слоем. // Материалы Международной
конференции и молодёжной школы “Информационные технологии и нанотехнологии”,
Самара, СГАУ, 2016, с. 612-618.
eLIBRARY
- Блатов И.А., Задорин А.И., Китаева Е.В. Об интерполировании L-cплайнами
функций с большими градиентами в пограничном слое // Труды Международной
конференции по вычислительной и прикладной математике "ВПМ’17" в рамках
"Марчуковских научных чтений", Новосибирск, 25 июня – 14 июля 2017 г.
[Электрон. ресурс].
eLIBRARY
8. Численное дифференцирование функций с большими градиентами
- Blatov I.A., Zadorin A.I. Application a cubic spline to calculate
derivatives in the presence of a boundary layer // Journal of Physics:
Conference Series, 2021, v. 1791, 012069.
DOI
- Alexander Zadorin, Nikita Zadorin. The spline approach to the calculation
of derivatives on the Bakhvalov mesh in the presence of a boundary
layer. // Proceedings of the Workshop on Applied Mathematics and
Fundamental Computer Science 2020, Omsk, Russia, April 23-30, 2020.
CEUR Workshop Proceeding. Vol. 2642.
pdf
- Задорин А.И., Ильин В.П. Адаптивные формулы численного дифференцирования
при наличии пограничного слоя // Труды Международной конференции "
Актуальные проблемы вычислительной и прикладной математики". Новосибирск,
ИВМ и МГ СО РАН, 1 - 5 июля 2019 г., с. 144-150.
DOI
- Zadorin Alexander, Tikhovskaya Svetlana Formulas of numerical
differentiation on a uniform mesh for functions with the exponential
boundary layer // International Journal of Numerical Analysis and
Modeling, 2019, v. 16, № 4, p. 590-608.
pdf
- Blatov I.A., Zadorin A.I. Approaches to the calculation of derivatives
of functions with large gradients in the boundary layer under the values
at the grid nodes // Journal of Physics: Conference Series, 2019, v.
1158, 022029.
DOI
- Il'in V.P., Zadorin A.I. Adaptive formulas of numerical
differentiation of functions with large gradients // Journal of Physics:
Conference Series, 2019, v. 1260, 042003.
DOI
- Blatov I.A., Zadorin A.I., Kitaeva E.V. An application of the
exponential spline for the approximation of a function and its
derivatives in the presence of a boundary layer // Journal of Physics:
Conference Series, 2018, v. 1050, 012012.
DOI
- Zadorin A.I. Analysis of Numerical Differentiation Formulas in a
Boundary Layer on a Shishkin Grid // Numerical Analysis and Applications
2018, v.11, № 3, p. 193-203.
DOI
- Задорин А.И. Подходы к вычислению производных функций с большими
градиентами в пограничном слое по значениям функции в узлах сетки //
Сеточные методы для краевых задач и приложения. Материалы Двенадцатой
Международной конференции. Казань: Казанский университет, 2018, с.
66-71.
- Блатов И.А., Задорин А.И., Китаева Е.В. Аппроксимация производных
функций с большими градиентами на основе сплайновой интерполяции //
Труды Международной конференции "Вычислительная математика и
математическая геофизика", посвященной 90-летию со дня рождения
академика А.С. Алексеева. Новосибирск, ИВМ и МГ СО РАН, 8 - 12
октября 2018 г., с. 60-66.
- Задорин А.И. Анализ формул численного дифференцирования на сетке
Шишкина при наличии пограничного слоя // Сибирский журнал вычислительной
математики, 2018, т. 21, № 3, с. 243-254.
Труды конференций
- Тиховская С.В., Задорин А.И. Формулы численного дифференцирования
функций с большими градиентами // Труды Международной конференции
по вычислительной и прикладной математике "ВПМ’17" в рамках "Марчуковских
научных чтений", Новосибирск, 25 июня – 14 июля 2017 г. Стр. 878–884.
eLIBRARY
9. Другие задачи
- Игнатьев В.Н., Задорин А.И. Конечно-разностный метод расчета двумерного
ламинарного пламени. // Физика горения и зрыва, 1986, N 4, c. 39-42.
pdf
Ignat'ev V.N., Zadorin A.I. finite-difference method for calculation of
a two-dimensional laminar flame // Combustion, Explosion and Shock waves,
1986, v. 22, № 4, p. 423-425.
DOI
Препринты
- Игнатьев В.Н., Задорин А.И. Численное моделирование двумерного пламени
// Препринт ВЦ СО АН СССР, Новосибирск, 1983,446.
- Игнатьев В.Н.,Алексеева Т.Я., Задорин А.И. Моделирование двумерного
ламинарного горения углеводородных топлив с учетом образования вредных
примесей. // Препринт ВЦ СО АН СССР, 1989, № 840.
- Бушуев В.В., Задорин А.И., Паничкин В.В. Прогнозирование источников
загрязнения и распространения загрязнений в воздушном бассейне города.
// Препринт № 15 ИИТПМ СО РАН, Омск, 1994, 27с.
Тезисы конференций
- Ignatyev V.N., Zadorin A.I. A finite difference method on nonuniform
mesh for a singular perturbation problem. // Enlarged abstracts Equediff
6, Brno, 1985, pp. 51-52.
- Игнатьев В.Н., Задорин А.И. Экспоненциально подогнанная конечно-разностная
схема на неравномерной сетке.// Тезисы докладов 4 Международной конференции
по пограничным и внутренним слоям: вычислительные и асимптотические методы,
Новосибирск, 1986.
- Задорин А.И. Разностная схема для сингулярно-возмущенного уравнения
второго порядка. // Тезисы межд. конф. " Актуальные проблемы вычисл. и
прикл. математики", Новосибирск, 1987.
- Задорин А.И. Разностная схема на неравномерной сетке для сингулярно-возмущенного
уравнения второго порядка с большим решением. // Тезисы всесоюзного
семинара " Теорет. основы и констр. численных алгоритмов решения задач
мат. физики, Кемерово, 1988.
- Задорин А.И. Численное решение нелинейного эллиптического уравнения с
малым параметром при старших производных // Тезисы докл. Всесоюзной
конференции " Асимпт. методы теории синг. возмущенных уравнений и
некорректно поставленных задач ", Бишкек, 1991, c. 45.
- Игнатьев В.Н., Алексеева Т.Я., Задорин А.И. Численное моделирование
двумерного ламинарного пламени. // Тезисы докл. Всесоюзной конф. "Матем.
методы в химической кинетике и теории горения", Кызыл, 1991, с. 24.
- Задорин А.И. Численное решение системы обыкновенных нелинейных
сингулярно-возмущенных уравнений. // Тезисы докл. 3 Всесоюзной школы
"Числ. методы механики сплошной среды", Красноярск, 1991.
- Бушуев В.В., Задорин А.И., Паничкин А.В. Моделирование переноса
загрязняющих веществ от ряда источников и алгоритмы поиска этих
источников. // Тезисы докл. 2 Всероссийской конференции по математическим
проблемам экологии, Новосибирск, 1994, с. 132-133.
- Задорин А.И. Численное решение краевой задачи для системы уравнений с
малым параметром. // Тезисы докл. межд. конф. "Математические модели и
числ. методы МСС, Новосибирск, 1996.
- Задорин А.И. Монотонная схема Самарского для нелинейного уравнения
второго порядка с малым параметром в случае третьей краевой задачи. //
Тезисы докл. межд. конф. "Математические модели и методы их исследования",
Красноярск, 1997.
- Задорин А.И. Разностная схема для нелинейного двумерного эллиптического
уравнения с малыми параметрами при старших производных. // Тезисы докл.
третьего Сибирского конгресса по прикладной и индустриальной математике,
1998, часть 2, с. 14.
- Zadorin A.I. Numerical solution of the nonlinear differential equation
with a small parameter on the infinite interval.// Abstracts of Workshop
on the analytical and computational methods for convection - dominated
and singular perturbed problems, p. 32-33. Lozenetz, Bulgaria, 1998.
- Задорин А.И. Редукция разностных схем с полубесконечным числом узлов к
конечному. // Тезисы докл. четвертого Сибирского конгресса по прикладной
и индустриальной математике, 2000, часть 2, с. 84-85.
- Zadorin A.I. Numerical Method for Blasius Equation on an infinite
Interval.// Abstracts of International Conference on Boundary and
Interior Layers - Computational and Asymptotic Methods, Georg-August
University, Gottingen, 2006, p. 61-62.
- Zadorin A. Numerical Method for a Singular Perturbed Parabolic Equation
in a strip.// Abstracts of Fourth International Conference on Finite
Difference Methods: Theory and Applications, University of Rousse,
Rousse, Bulgaria, 2006, p. 28.
- Задорин А.И. Метод интерполяции для эллиптической задачи с пограничным
слоем. // Тезисы конференции “Математика в современном мире“, Новосибирск,
ИМ СО РАН, 2007, с. 227.
- Zadorin A.I. Interpolation method for an elliptic boundary layer problem.
// Abstracts of the 12 International Conference Mathematical Modelling
and Analysis, Tracay 2007, VGTU, 2007, p.111.
- Zadorin A.I. A spline-interpolation method for a boundary layer problem
// Abstracts of International Conference “Differential equations,
function spaces, approximation theory”, Novosibirsk, Russia, October 5-12,
2008, p. 628.
- Задорин А.И., Сабанцев И.А. Численный метод для параболического уравнения
на неограниченном интервале // Тезисы 9 всероссийской конференции молодых
ученых по математическому моделированию и информационным технологиям,
Кемерово, 28-30 октября 2008, с. 20.
- Vulkov L.G., Zadorin A.I. Fast Iteration Algorithms for Solution of
Exponential Schemes of Semi-Linear Singularly Perturbed 2D Reaction-Convection
Equations // Abstracts of First International Conference on Application
of Mathematics in Technical and Natural Sciences, 22-27 June 2009,
Sozopol, Bulgaria, p. 85.
- Задорин А.И. Метод сплайн-интерполяции для функции с погранслойной
составляющей // Тезисы Международной конференции “Современные проблемы
вычислительной математики и математической физики”, МГУ, 2009, 2 стр.
- Задорин А.И. Двухсеточный метод решения эллиптического сингулярно
возмущенного уравнения // Тезисы Всероссийской конференции ”Математика
в приложениях”, Новосибирск, ИМ СО РАН, 2009, с. 118-119.
- Zadorin A. Smooth spline-interpolation for a function with a boundary
layer component // Absrracts of Fifth International Conference on Finite
Difference Methods: Theory and Applications, 28 June - 2 July 2010,
Lozenetz, University of Rousse, Bulgaria, 2010, p. 25.
- Задорин А.И. Аналог квадратического сплайна для функций с погранслойной
составляющей // Тезисы Российской конференции “Методы сплайн-функций”,
Новосибирск, ИМ СО РАН, 2011, с. 47-48.
- Задорин А.И., Задорин Н.А. Двухсеточный метод решения линейного
эллиптического уравнения с регулярными пограничными слоями // Тезисы
Международной конференции "Современные проблемы прикладной математики
и механики: теория, эксперимент и практика", посвященной 90-летию со
дня рождения академика Н.Н. Яненко. Новосибирск, ИВТ СО РАН, 2011, с. 90.
- С.В. Тиховская, А.И. Задорин Двухсеточный метод для нелинейного
сингулярно возмущенного уравнения второго порядка // Расширенные
тезисы докладов Всероссийской конференции по вычислительной математике
КВМ-2011, 29.06-1.07. 2011. Новосибирск, ИВМ и МФ СО РАН, с. 1-4.
- A. Zadorin, N. Zadorin Quadrature formula with five nodes for functions
with a boundary layer component // Abstracts of fitth conference “Numerical
Analysis and Applications”, 15-20 June 2012, Lozenetz, Bulgaria, p.57-58.
- Задорин А.И., Задорин Н.А. Квадратурные формулы для функций с погранслойной
составляющей // Тезисы Международной конференции “Дифференциальные
уравнения, функциональные пространства, теория приближений”, посвященной
105-летию С.Л. Соболева. (Новосибирск, 18-24 августа 2013г.). Институт
математики СО РАН, Новосибирск, 2013, с. 385.
- Задорин А.И. Двухсеточный метод для эллиптической задачи с пограничными
слоями // Сборник научных трудов Международной конференции “Разностные
схемы и их приложения”, посвященной 90-летию профессора В.С. Рябенького.
Институт прикладной математики им. М.В. Келдыша РАН, Москва, 27-31 мая
2013, с. 62-64.
- A.I. Zadorin, N.A. Zadorin Interpolation formulas for functions with a
boundary layer component and its application. // Abstracts of International
conference “Advanced Mathematics, Computations and Applications-2014”,
Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, 2014, p. 25.
- Zadorin A.I. Analysis of Lagrange interpolation for functions with a
boundary layer component // Abstracts of sixth Conference on Finite
difference Methods: Theory and applications, june 18-23, 2014, Lozenetz,
University of Rousse, Rousse, Bulgaria, p. 44.
- Zadorin A.I. Interpolation formulas for functions with large gradients
in a boundary layer // Abstracts of the 13th Annual Workshop “Numerical
Methods for Problems with Layer Phenomena”, Moscow, Russia, Lomonosov
Moscow state university, 06-09 04 2016, p. 54-55.
- Zadorin A.I. Two-dimensional Interpolation of Functions with Boundary
Layer Components // NAA’16: Sixth Conference on Numerical Analysis and
Applications. Abstracts. Rousse: University of Russe, 2016, p. 64.
- Tikhovskaya S.V., Zadorin A.I. Polynomial interpolation of the function
of two variables with large gradients in the parabolic and exponential
boundary layers // Eighth International Conference on Application of
Mathematics in Technical and Natural Sciences. Book of abstract.
Euro-American Consortium for Promoting the Application of Mathematics
in Technical and Natural Sciences, 2016, p. 71–72.
- Задорин А.И. Двумерные интерполяционные формулы для функций с большими
градиентами в пограничных слоях // Тезисы докладов Международной
конференции “Современные проблемы математической физики и вычислительной
математики”, приуроченной к 110-летию со дня рождения академика А.Н.
Тихонова, 31.10-03.11 2016 года. Москва, МГУ, 2016, с. 212.
- Блатов И.А., Задорин А.И., Китаева Е.В. Об интерполировании L-сплайнами
функций с большими градиентами в пограничном слое// Марчуковские научные
чтения – 2017. Тезисы. Институт вычислительной математики и математической
геофизики Сибирского отделения Российской академии наук. Новосибирск. 25
июня – 14 июля 2017 г. Новосибирск: Омега Принт, 2017. С. 50–51.
- Задорин А.И. Квадратурные формулы для функций с большими градиентами //
Математика в современном мире. Международная конференция, посвященная
60-летию Института математики им. С. Л. Соболева (Новосибирск, 14–19 08
2017 г.): Тез. Докладов / под ред. Г.В. Демиденко. Новосибирск: Изд-во
Института математики, 2017. С. 396.
- Тиховская С.В., Задорин А.И. Формулы численного дифференцирования функций
с большими градиентами // Марчуковские научные чтения – 2017. Тезисы.
Институт вычислительной математики и математической геофизики Сибирского
отделения Российской академии наук. Новосибирск. 25 июня – 14 июля 2017 г.
Новосибирск: Омега Принт, 2017. С. 63.
Учебные пособия
- Задорин А.И. Численное решение обыкновенных дифференциальных уравнений
с малым параметром.// Методические указания, Омск. Омск. универcитет,
1997, 45 с.
- Задорин А.И. Численное решение уравнений с малым параметром на бесконечном
интервале.// Методические указания, Омск. Омск. универcитет, 1998, 51 с.
- Задорин А.И., Лавров Д.Н., Червяков О.В. Издательская система LATEX 2e
для химиков. // Учебно-методическое пособие, Омск, ОмГУ, 2001, 100 c.
- Задорин А.И. Разностные схемы для задач с пограничным слоем. // Учебное
пособие, Омск, ОмГУ, 2002, 118 c.
- Задорин А.И. Метод выделения многообразий для краевых задач на бесконечном
интервале: Учебное пособие.- Омск, ОмГУ, 2003.- 73 c.
Отчеты
- Задорин А.И., Филей Г.П. и др. Научно-технический отчет № Б5640С. //
Предприятие п/я В-8190, 1976.
- Задорин А.И., Филей Г.П. и др. Научно-технический отчет № Б5602С. //
Предприятие п/я В-8190, 1977.
- Игнатьев В.Н.,Задорин А.И., Алексеева Т.Я. Модуль химической кинетики
ППП "РАФИПКС" для моделирования физико-химических процессов в камерах
сгорания. // Отчет ВЦ СО АН СССР, номер регистрации 0186.0125731 Инв.
0287. 00430 49, 1987.
- Игнатьев В.Н., Задорин А.И. Разработка конечно-разностных алгоритмов
экспоненциальной подгонки для решения сингулярно - возмущенных уравнений.
// Отчет ВЦ СО АН СССР ,номер регистр. 0186.0125731 ,инв. 0287.0070969,
Омск, 1987.
- Задорин А.И., Мухаметов М.Х., Паничкин А.В., Степачев С.Е. Комплексные
вопросы моделирования камеры сгорания. // Омск, 1990, отчет ВЦ СО АН СССР;
N регистрации 0186.0125731; инв. N.0290.00430048.
- Шапцев В.А., Паничкин А.В.,Задорин А.И., Осинцев Е.В. Разработка и адаптация
моделей переноса загрязняющих веществ и поиска источников загрязнений с
расчетом экологической обстановки в промышленном регионе. // Отчет по НИР,
N гос.регистрации 01980004501, инв. N 2-98-02980004868. Деп. в ВИНИТИ.-76с.