
On Complexity of the Optimal Recombination
for the Travelling Salesman Problem

Anton V. Eremeev?

Omsk Branch of Sobolev Institute of Mathematics,
13 Pevtsov str. 644043, Omsk, Russia.

eremeev@ofim.oscsbras.ru

Abstract. The computational complexity of the optimal recombination
for the Travelling Salesman Problem is considered both in the symmetric
and in the general cases. Strong NP-hardness of these optimal recombi-
nation problems is proven and solving approaches are considered.

1 Introduction

The Travelling Salesman Problem (TSP) is one of the well-known NP-hard com-
binatorial optimization problems [1]: given an (n × n)-matrix (cij) with non-
negative elements (distances), it is required to find a permutation 〈i1, i2, . . . , in〉
of the elements 1, 2, . . . , n minimizing the sum ci1,i2 + . . . + cin−1,in + cin,i1 . In
case the matrix (cij) is symmetric, the TSP is called symmetric as well. In case
such property is not presupposed, we will say that the general case is considered.

In the general case a tour of the travelling salesman is a Hamiltonian circuit
in a complete digraph without loops or multiple arcs, where the set of vertices
is V = {v1, . . . , vn} and the set of arcs is A. The length of an arc (i, j) ∈ A,
equals cij . In the symmetric case the tour direction does not matter so a travelling
salesman’s tour is a Hamiltonian cycle in a complete graph G with the same set
of vertices V and a set of edges E, where the length of an edge {i, j} is cij = cji.

This paper is devoted to the complexity analysis of the optimal recombination
problem (ORP) for the TSP. The problem consists in finding a shortest travelling
salesman’s tour which coincides with two given feasible parent solutions in those
arcs (or edges) which belong to both parent solutions and does not contain the
arcs (or edges) which are absent in both parent solutions. These constraints are
equivalent to a requirement that the recombination should be respectful and
gene transmitting as coined by Radcliffe [11].

In the symmetric case the input of ORP consists of an edge-weighted com-
plete graph and two Hamiltonian parent cycles in it. In the general case the
problem input consists of an arc-weighted directed graph and two parent circu-
lations. In the general case, the ORP formulation implies that the direction of
arcs in the desired tour must coincide with the direction of arcs in parent solu-
tions, unless both opposite arcs between two vertices are present (in the later
case both directions are possible).
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For the first time the optimal recombination was employed by Agarwal, Orlin
and Tai [2] for the maximum independent set problem. Presently, this approach
has multiple applications. In the genetic algorithms (GAs) where the set of
feasible solutions is a set of permutations, the recombination procedures of such
kind were used by Yagiura and Ibaraki [14], Cotta, Alba and Troya [6], Cook
and Seymour [5] and Whitley, Hains and Howe [13].

Formulations of the optimal recombination problems in [5, 6, 14] differ from
the ORP formulation considered in this paper, e.g., in [5] the result of recombi-
nation may contain any edge belonging at least to one of the parent solutions,
while in our case all edges included in both of the parent solutions must be used.
Both approaches to optimal recombination are meaningful: the optimal recom-
bination problem [5] has larger or equal set of feasible solutions (and is usually
more complex), while the approach employed here, usually leads to more simple
ORPs. However, the smaller computational cost of recombination does not nec-
essarily improve the overall performance of a GA. The choice between the two
approaches should be based on the complexity analysis and experiments.

Many problems, like the maximum independent set problem, admit poly-
nomial-time recombination [3, 8]. In a number of GAs, where the optimal re-
combination turns out to be NP-hard, many authors use the branch-and-bound
methods [4] or dynamic programming [14] in the crossover operator. In such
cases, often the approximate versions of the branch-and-bound or dynamic pro-
gramming are used to avoid excessive computational cost. In dynamic program-
ming [14], the number of states is limited by a given threshold. In the branch-and-
bound methods [4, ?] the result of recombination is the best solution found within
a limited computation time or limited number of iterations. The dimensional-
ity of recombination problem may also be reduced by choosing an appropriate
granularity of representation [6].

The paper is structured as follows. In Section 2, using the results of Itai,
Papadimitriou and Szwarcfiter [10] we show NP-hardness of the optimal recom-
bination problem in the symmetric case. Here we also prove the NP-hardness of
optimal recombination in the general case, using the well-known idea of trans-
forming the vertex cover problem into the TSP [1]. In Section 3 we propose
reductions of the considered ORPs to the TSP on graphs with bounded vertex
degrees. The resulting TSP problems may be solved, e.g. by means of the algo-
rithms of Eppstein [7], which have the time bounds significantly smaller than the
well-known upper bound O(n22n) of the dynamic programming [9]. Concluding
remarks are given in Section 4.

2 NP-hardness of Optimal Recombination

2.1 Symmetric Case

In [10] it is proven that recognition of Hamiltonian grid graphs (the Hamilton
cycle problem) is NP-complete. Recall that a graph G′ = (V ′, E′) with vertex
set V ′ and edge set E′ is called a grid graph, if its vertices are the integer vectors



v = (xv, yv) ∈ Z2 on plane, i.e., V ′ ⊂ Z2, and a pair of vertices is connected by
an edge iff the Euclidean distance between them is equal to 1. Here and below,
Z denotes the set of integer numbers. Let us call the edges that connect two
vertices in Z2 with equal first coordinates vertical edges. The edges that connect
two vertices in Z2 with equal second coordinates will be called horizontal edges.

Let us assume V ′ > 4, graph G′ is connected and there are no bridges
in G′ (note that if any of these assumptions are violated, then existence of a
Hamiltonian cycle in G′ can be recognized in polynomial time). Now we will
construct a reduction from the Hamilton cycle problem for G′ to an optimal
recombination problem for some complete edge-weighted graph G = (V, E),
where V = V ′.

Let the edge weights cij in graph G be defined so that if a pair of vertices
{vi, vj} is connected by an edge of G′, then cij = 0; all other edges in G have
a weight 1. Consider the following two parent solutions of the TSP on graph G
(an example of graph G′ and two parent solutions for the corresponding TSP is
given in Fig. 1).

Let ymin = minv∈V ′ yv, ymax = maxv∈V ′ yv. For any integer y ∈ {ymin, . . . ,
ymax} denote by P y the horizontal chain that passes through vertices v ∈ V ′

with yv = y by increasing values of coordinate x. Let the first parent tour
follow the chains P ymin , P ymin+1, . . . , P ymax , connecting the right-hand end of
each chain P y with y < ymax to the left-hand end of the chain P y+1. Note that
these connections never coincide with some vertical edges because G′ has no
bridges. To create a cycle, connect the right-hand end vTR of the chain P ymax to
the left-hand end vBL of the chain P ymin .

The second parent tour is constructed similarly using the vertical chains. Let
xmin = minv∈V ′ xv, xmax = maxv∈V ′ xv. For any integer x ∈ {xmin, . . . , xmax}
let Qx denote the vertical chain that passes monotonically in y through the
vertces v ∈ V ′, such that xv = x. The second parent tour follows the chains
Qxmin , Qxmin+1, . . . , Qxmax , connecting the lower end of each chain Qx with x <
xmax to the upper end of chain Qx+1. These connections never coincide with hor-
izontal edges since G′ has no bridges. Finally, the lower end vRB of chain Qxmax

is connected to the upper end vLT of chain Qxmin .
Note that the constructed parent tours have no common edges. Indeed, com-

mon slanting edges do not exist since V ′ > 4. The horizontal edges belong to
the first tour only, except for the situation where yvRB = yvLT and the edge
{vRB, vLT} of the second tour is oriented horizontally. But if the first parent
tour included the edge {vRB, vLT} in this situation, then the edge {vRB, vLT}
would be a bridge in graph G′. Therefore the parent tours can not have the
common horizontal edges. Similarly the vertical edges belong to the second tour
only, except for the case where xvTR = xvBL and the edge {vTR, vBL} of the first
tour is oriented vertically. But in this case the parent tour can not contain the
edge {vTR, vBL}, since G′ has no bridges.

Note also that the union of edges of parent solutions contains E′. Conse-
quently, any Hamiltonian cycle in graph G′ is a feasible solution of the ORP.
At the same time, a feasible solution of the ORP has zero value of objective



Fig. 1. Example of two parent tours used in reduction from Hamilton cycle problem
to ORP in symmetric case.



function iff it contains only the edges of E′. Therefore, the optimal value of ob-
jective function in the ORP under consideration is equal to 0 iff there exists a
Hamiltonian cycle in graph G′. So, the following theorem is proven.

Theorem 1. Optimal recombination for the TSP in the symmetric case is NP-
hard in the strong sense.

In [10] it is also proven that recognition of grid graphs with a Hamiltonian
path is NP-complete. Optimal recombination for this problem consists in finding
a shortest Hamiltonian path, which uses those edges where both parent tours
coincide, and never uses the edges absent in both parent tours. The following
theorem is proved analogously to Theorem 1.

Theorem 2. Optimal recombination for the problem of finding the shortest Ham-
iltonian path in a graph with arbitrary edge lengths is NP-hard in the strong
sense.

Note that in the proof of Theorem 2, unlike in Theorem 1, it is impossible
simply to exclude the cases where graph G′ has bridges. Instead, the reduction
should treat separately each maximal (by inclusion) subgraph without bridges.

2.2 The General Case

In the general case of TSP the ORP is not a more general problem than the ORP
considered in Subsection 2.1 because in the problem input we have two directed
parent paths, while in the symmetric case the parent paths were undirected. Even
if the distance matrix (cij) is symmetric, a pair of directed parent tours defines a
significantly different set of feasible solutions, compared to the undirected case.
Therefore, the general case requires a separate consideration of ORP complexity.

Theorem 3. Optimal recombination for the TSP in the general case is NP-hard
in the strong sense.

Proof. We use a modification of the textbook reduction from the vertex
cover problem to the TSP [1].

Suppose an instance of a vertex cover problem is given as a graph G′ =
(V ′, E′). It is required to find a vertex cover in G′ of minimal size. Let us assume
that the vertices in V ′ are enumerated, i.e. V ′ = {v1, . . . , vn}, where n = |V ′|,
and let m = |E′|.

Consider a complete digraph G = (V, A) where the set of vertices V consists
of |E′| cover-testing components, each of 12 vertices: Ve = {(vi, e, k), (vj , e, k) :
1 ≤ k ≤ 6} for each e = {vi, vj} ∈ E′, i < j. Besides that, V contains n selector
vertices, which we will denote by a1, . . . , an, and besides that, a supplementary
vertex an+1.

Let the parent tours in graph G be defined by the following two circuits (an
example of a pair of such circuits for the case of G′ = K3 is provided in fig. 2).



Fig. 2. A pair of parent circuits for the case of G′ = K3. It is supposed that the
incident edges are enumerated as follows. For vertex v1 : ev1,1 = e1, ev1,2 = e3; for
vertex v2 : ev2,1 = e1, ev2,2 = e2; for vertex v3 : ev3,1 = e2, e

v3,2 = e3.



1. Each cover-testing component Ve, where e = {vi, vj} ∈ E′ and i < j is
visited twice by the first tour. The first time it visits the vertices that correspond
to vi in the sequence

(vi, e, 1), . . . , (vi, e, 6), (1)

the second time it visits the vertices corresponding to vj , in the sequence

(vj , e, 1), . . . , (vj , e, 6). (2)

2. The second tour goes through each cover-testing component Ve, where
e = {vi, vj} ∈ E′ and i < j in the following sequence:

(vi, e, 2), (vi, e, 3), (vj , e, 1), (vj , e, 2), (vj , e, 3), (vi, e, 1),

(vi, e, 6), (vj , e, 4), (vj , e, 5), (vj , e, 6), (vi, e, 4), (vi, e, 5).

The first parent tour connects the cover-testing components as follows. For
each vertex v ∈ V ′ order arbitrarily the edges incident to v in graph G′ in se-
quence: ev,1, ev,2, . . . , ev,deg(v), where deg(v) is the degree of vertex v in G′. In the
cover-testing components, following the chosen sequence ev,1, ev,2, . . . , ev,deg(v),
this tour passes 6 vertices in each of the components (v, e, k), k = 1, . . . , 6, e ∈
{ev,1, ev,2, . . . , ev,deg(v)}. Thus, each vertex of any cover-testing component Ve,
e = {u, v} ∈ E′ will be visited by one of the two 6-vertex sub-tours.

The second tour passes the cover-testing components in an arbitrary order
of edges Ve1 , . . . , Vem , entering each component Vek

for any ek = {vik
, vjk

} ∈
E′, ik < jk, k = 1, . . . , m via vertex (vik

, ek, 2) and exiting through vertex
(vik

, ek, 5). Thus, a sequence of vertex indices i1, . . . , im is induced (repetitions
are possible). In what follows, we will need the beginning i1 and the end im of
this sequence.

The parent sub-tours described above are connected to form two Hamiltonian
circuits in G using the vertices a1, . . . , an+1. The first circuit is completed using
the arcs (

a1, (v1, e
v1,1, 1)

)
,

(
(v1, e

v1,deg(v1), 6), a2

)
,

(
a2, (v2, e

v2,1, 1)
)
,

(
(v2, e

v2,deg(v2), 6), a3

)
,

. . . ,
(
an, (vn, evn,1, 1)

)
,

(
(vn, evn,deg(vn), 6), an+1

)
,
(
an+1, a1

)
.

The second circuit is completed by the arcs
(
a1, a2

)
, . . . ,

(
an−1, an

)
,
(
an, an+1

)
,

(
an+1, (vi1 , e1, 2)

)
,

(
(vim , em, 5), a1

)
.

Assign unit weights to all arcs
(
ai, (vi, e

vi,1, 1)
)
, i = 1, . . . , n in the complete

digraph G. Besides that, assign weight n+1 to all arcs of the second tour which



are connecting the components Ve1 , . . . , Vem
, the same weights are assigned to

the arcs
(
an+1, (vi1 , e1, 2)

)
and

(
(vim , em, 5), a1

)
. All other arcs in G are given

weight 0.
Note that for any vertex cover C of graph G′, the set of feasible solutions of

ORP with two parents defined above contains a circuit R(C) with the following
structure (an example of such circuit for the case of G′ = K3 is provided in
fig. 3).

For each vi ∈ C the circuit R(C) contains the arcs
(
ai, (vi, e

vi,1, 1)
)

and(
(vi, e

vi,deg(vi), 6), ai+1

)
. The components Ve, e ∈ {evi,1, evi,2, . . . , evi,deg(vi)}

are connected together by the arcs from the first tour. For each vertex vi which
does not belong to C, the circuit R(C) has an arc (ai, ai+1). Also, R(C) passes
the arc (an+1, a1).

The circuit R(C) visits each cover-testing component Ve by one of the two
ways:

1. If both endpoints of an edge e belong to C, then R(C) passes the compo-
nent following the same arcs as the first parent tour.

2. If e = {u, v}, u ∈ C, v 6∈ C, then R(C) visits the vertices of the component
in sequence

(u, e, 1), (u, e, 2), (u, e, 3), (v, e, 1), . . . , (v, e, 6), (u, e, 4), (u, e, 5), (u, e, 6).

One can check straightforwardly that this sequence does not violate the ORP
constraints.

In general, the circuit R(C) is a feasible solution to the ORP because, on one
hand, all arcs used in R(C) are present at least in one of the parent tours. On
the other hand, both parent tours contain only the arcs of the type

(
(u, e, 2), (u, e, 3)

)
,

(
(u, e, 4), (u, e, 5)

)
,

(
(v, e, 1), (v, e, 2)

)
,

(
(v, e, 2), (v, e, 3)

)
,

(
(v, e, 4), (v, e, 5)

)
,
(
(v, e, 5), (v, e, 6)

)

within the cover-testing components Ve, e = {u, v} ∈ E′, where vertex u has
a smaller index than v. All of these arcs belong to R(C). The total weight of
circuit R(C) is |C|.

Now each feasible solution R to the constructed ORP defines a set of ver-
tices C(R) as follows: vi, i ∈ {1, . . . , n} belongs to C(R) iff R contains an arc(
ai, (vi, e

vi,1, 1)
)
.

Let us consider only such ORP solutions R that have the objective value
at most n. These solutions do not contain the arcs that connect the cover-
testing components in the second parent tour. They also do not contain the
arcs

(
an+1, (vi1 , e1, 2)

)
and

(
(vim , em, 5), a1

)
. Note that the set of such ORP

solutions is non-empty, e.g. the first parent tour belongs to it.
Consider the case where the arc

(
ai, (vi, e

vi,1, 1)
)

belongs to R. Each cover-
testing component Ve with e = {vi, vj} ∈ E′ in this case may be visited in one



Fig. 3. An ORP solution R(C) corresponding to the vertex cover {v1, v3} of graph
G′ = K3.



of the two possible ways: either the same way as in the first parent tour (in this
case, vj must also be chosen into C(R) since R Hamiltonian), or in the following
sequence:

(vi, e, 1), (vi, e, 2), (vi, e, 3), (vj , e, 1), . . . , (vj , e, 6), (vi, e, 4), (vi, e, 5), (vi, e, 6)

(in this case, vj will not be chosen into C(R)). In view of our assumption that

the arc
(
ai, (vi, e

vi,1, 1)
)

belongs to R, the cover-testing components Ve, e ∈
{evi,1, evi2, . . . , evi,deg(vi)} should be connected by the arcs of the first tour, and
besides that, R contains the arc

(
(vi, e

vi,deg(vi), 6), ai+1

)
. Note that the total

length of the arcs in R equals |C(R)|, and the set C(R) is a vertex cover in
graph G′, because the tour R passes each component Ve in a way that guarantees
coverage of each edge e ∈ E′.

To sum up, there exists a bijection between the set of vertex covers in
graph G′ and the set of feasible solutions to the ORP of length at most n.
The values of objective functions are not changed under this bijection, therefore
the statement of the theorem follows.

3 Transformation of the ORP into TSP on Graphs With
Bounded Vertex Degree

In this Section, the ORP problems are connected to the TSP on graphs (di-
graphs) with bounded vertex degree, arbitrary positive edge (arc) weights and a
given set of forced edges (arcs). It is required to find a shortest Hamiltonian cycle
(circulation) in the given graph (digraph) that passes all forced edges (arcs).

3.1 General Case

Consider the general case of ORP for the TSP, where we are given two parent
tours A1, A2 in a complete digraph G = (V, A). This ORP problem may be
transformed into the problem of finding a shortest Hamiltonian circuit in a sup-
plementary digraph G′ = (V ′, A′). The digraph G′ is constructed on the basis
of G by excluding the set of arcs A\(A1 ∪ A2) and contracting each path that
belongs to both parent tours into a pseudo-arc of the same length and the same
direction as those of the path. The lengths of all other arcs that remained in G′

are the same as they were in G. A shortest Hamiltonian circuit C ′ in G′ trans-
forms into an optimum of the ORP problem by means of reverse substitution of
each pseudo-arc in C ′ by the path corresponding to it.

Note that there are two ingoing arcs and two outgoing arcs for each ver-
tex in G′. The TSP on such a digraph is equivalent to the TSP on a cubic
digraph G′′ = (V ′′, A′′), where each vertex v ∈ V ′ is substituted by two vertices
v̌, v̂, connected by an artificial arc (v̌, v̂) of zero length. All arcs that entered v,
now enter v̌, and all arcs that left v are now outgoing from v̂. Let an arc e ∈ A′′

be forced and called a pseudo-arc, if it corresponds to a pseudo-arc in G′.



A solution to the last problem may be obtained through enumeration of all
feasible solutions to the TSP with forced edges on a supplementary graph Ḡ =
(V ′′, Ē). Here, a pair of vertices u, v is connected iff these vertices were connected
by an arc (or a pair of arcs) in the digraph G′′. An edge {u, v} ∈ Ē is assumed to
be forced if (u, v) or (v, u) is a pseudo-arc or an artificial arc in the digraph G′′. A
set of forced edges in Ḡ will be denoted by F̄ . All Hamiltonian cycles in Ḡ w.r.t.
the set of forced edges may be enumerated by means of the algorithm proposed
in [7] in time O(|V ′′| · 2(|Ē|−|F̄ |)/4). Then, for each Hamiltonian cycle from Ḡ
in each of the two directions we can check if it is possible to pass a circulation
in G′′, and if possible, compute the length of the circulation. This takes O(|V ′′|)
time for each Hamiltonian cycle. Note that |Ē|− |F̄ | = d ≤ |E′| ≤ 2n, where d is
the number of arcs which are present in one of the parents only. Consequently,
the time complexity of solving the ORP on graph G is O(n·2d/4), or O(n·1.42n).

Implementation of the method described above may benefit in the cases where
the parent solutions have many arcs in common.

3.2 Symmetric Case

Suppose the symmetric case takes place and two parent Hamiltonian cycles in
graph G = (V, E) are defined by two sets of edges E1 and E2. Let us construct
a reduction of the ORP in this case to a TSP with a set of forced edges on a
graph with vertex degree at most 4.

Similar to the general case, the ORP reduces to the TSP on a graph G′ =
(V ′, E′) obtained from G by exclusion of all edges that belong to E\(E1∪E2) and
contraction of all paths that belong to both parent tours. Here, by contraction
we mean the following mapping. Let Puv be a path with endpoints in u and v,
such that the edges of Puv belong to E1 ∩ E2 and Puv is not contained in any
other path with edges from E1 ∩ E2. Assume that contraction of the path Puv

maps all of its vertices and edges into one forced edge {u, v} of zero length. All
other vertices and edges of the graph remain unchanged. Let F ′ denote the set
of forced edges in G′, which are introduced when the contraction is applied to
all paths wherever possible.

The vertex degrees in G′ are at most 4, and |V ′| ≤ n. If an optimum of the
TSP on graph G′ with the set of forced edges F ′ is found, then substitution of
all forced edges by the corresponding paths yields an optimal solution to the
ORP problem. (Note that the objective functions of these two problems differ
by the total length of contracted paths.)

The search for an optimum to the TSP on graph G′ may be carried out by
means of the randomized algorithm proposed in [7] for solving TSP with forced
edges on graphs with vertex degree at most 4. Besides the problem input data
this algorithm is given a value p, which sets the desired probability of obtaining
the optimum. If p ∈ [0, 1) is a constant which does not depend on the problem
input, then the algorithm has time complexity O((27/4)n/3), which is O(1.89n).
There exists a deterministic modification of this algorithm corresponding to the
case p = 1 which requires greater computation time [7].



4 Conclusions

The obtained results indicate that optimal recombination for the TSP is NP-
hard. However, the algorithms exist that solve the optimal recombination prob-
lem in shorter time than the well-known time bound O(n22n) [9].

Apparently, the results on NP-hardness of the optimal recombination may
be extended to some other problems, where the set of feasible solutions consists
of permutations. For some binary encodings of solutions such extension could be
made using the reductions of optimal recombination problems [8].

There may be some room for improvement of the algorithms, proposed in [7]
for the TSP on graphs with vertex degrees at most 3 or 4 and forced edges, in
terms of the running time. Thus, it seems to be important to continue studying
this modification of the TSP. Also, in future it is necessary to perform exper-
imental study of the proposed optimal recombination algorithms and compare
them to other recombination methods.
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