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Abstract

We study a problem of optimal scheduling and lot-sizing a number of products on m un-

related parallel machines to satisfy given demands. A sequence dependent setup time is

required between lots of different products. The products are assumed to be all continuously

divisible or all discrete. The criterion is to minimize the time, at which all the demands are

satisfied, Cmax, or the maximum lateness of the product completion times from the given

due dates, Lmax. The problem is motivated by the real-life scheduling applications in multi-

product plants. We derive properties of optimal solutions, NP-hardness proofs, enumeration

and dynamic programming algorithms for various special cases of the problem. The major

contribution is an NP-hardness proof and pseudo-polynomial algorithms linear in m for the

case, in which the number of products is a given constant. The results can be adapted for

solving a production line design problem.
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1 Introduction

There are m unrelated parallel machines, which are used for manufacturing n products in

lots. The products can be either all continuously divisible, or all discrete. A lot is the

maximal quantity of the same product, which is manufactured on the same machine with no

inserted quantity of another product. Each lot is preceded by a sequence dependent setup

time. The size of a lot is the quantity of the product contained in it. In the continuous case,

it is a positive real number, and in the discrete case, it is a positive integer number. The

following parameters are given for each product i:

Di - a demand (at least this quantity of product i should be manufactured);

Bi - an upper bound on total production (at most this quantity of product i should be

manufactured), Bi ≥ Di;

di - a due date, di ≥ 0;

Mi - a subset of eligible machines (machines from the set {1, . . . ,m}\Mi cannot be used

for manufacturing product i), Mi 6= φ;

pli - a per unit processing requirement for product i on machine l (it is required pli · x time

units for machine l to produce x units of product i), l ∈Mi;

q0
li - a lower bound on the size of a lot on machine l (a lot of a size x < q0

lj is not allowed

on machine l), l ∈Mi;

slij - a setup time required to switch from processing a lot of product i to a lot of product

j, j 6= i, on machine l, l ∈Mi ∩Mj;

sl0i - a setup time required to start processing a lot of product i, if it is manufactured first

on machine l, l ∈Mi.

Let Nl denote the set of products eligible for machine l, i.e., Nl := {i | l ∈ Mi, i =

1, . . . , n}, and let nl = |Nl|, l = 1, . . . ,m. Denote nmax = max{nl | l = 1, . . . ,m}.

We assume that all the numerical input parameters are non-negative integer numbers. A

schedule specifies decision variables, which are product lots (their sizes), assignment of the

lots to the machines, and their sequences on the machines.
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We consider two objective functions to be minimized: the makespan, Cmax = max{Ci|i =

1, . . . , n}, and the maximum lateness, Lmax = max{Ci − di|i = 1, . . . , n}, where Ci is the

time when the last unit of product i has been manufactured. Following the traditional

three-field notation for scheduling problems, see Graham et al. [8], we denote our problem

as R|slij, β|γ, where β ∈ {cntn, dscr} specifies continuous and discrete cases, respectively,

and γ ∈ {Cmax, Lmax} specifies the objective function to be minimized. If the number of

machines m is a given constant, then the descriptor Rm will be used instead of R.

Note that the formulated problem is solvable if and only if Bi ≥ min{q0
li | l ∈ Mi} for

all i = 1, . . . , n. Therefore, we assume without loss of generality that Bi ≥ q0
li, l ∈ Mi, i =

1, . . . , n.

Any of the four versions of the problem R1|slij, β|γ, β ∈ {cntn, dscr}, γ ∈ {Cmax, Lmax},

is NPO-complete (see Ausiello et al. [3] for definition) because it contains the problem Hamil-

tonian Path of Minimum Weight as a subproblem, and the latter problem is polynomially

equivalent to the Travelling Salesman Problem (TSP), which is NPO-complete (Orponen

and Mannila [14]). It follows that the problem R1|slij, β|γ cannot be approximated with any

constant or polynomial factor of the optimum in polynomial time, unless P = NP .

An important special case appears if the setup times satisfy the triangle inequality:

slij + sljk ≥ slik, i = 0, 1, . . . , n, j = 1, . . . , n, k = 1, . . . , n, l ∈Mi ∩Mj ∩Mk. (1)

We denote this special case by placing symbol ∆ in front of slij in the second field of the

three-field notation. Papadimitriou and Vempala [15] showed that TSP with asymmetric arc

lengths and the triangle inequality satisfied cannot be approximated better than 220
219

times

the optimum in polynomial time. Therefore, the non-approximability bound of 220
219

applies

for R1|∆slij, β|γ, β ∈ {cntn, dscr}, γ ∈ {Cmax, Lmax}.

Our primary interest in the problem R|slij, β|γ stems from the medium-range production

scheduling applications in multi-product chemical plants (see, e.g., Bitran and Gilbert [4],

Lin et al. [12], and Shaik et al. [20]). Other applications of this model can be found

in metal production in foundries (dos Santos-Meza, dos Santos and Arenales [2], and de

Araujo, Arenales and Clark [1]), and textile industry (Silva and Magalhaes [18], and Taner

et al. [22]). In these large-scale problems, the efficient utilization of the critical production

units constitutes the main source of complexity. Our problem can be applied for optimal

scheduling of the critical production units in situations where other units (e.g. feed transfer,

storage and final product filling units in chemical plants) are not the bottleneck for the whole
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system.

Problem R|slij, β|γ belongs to a class of problems combining scheduling with batching

or lot-sizing. Surveys of this line of research are given by Potts and Van Wassenhove [17],

Potts and Kovalyov [16] and Zhu and Wilhelm [24]. The most closely related problems were

studied by Monma and Potts [13] and Brucker et al. [5]. The difference is that Monma

and Potts considered identical machines, the triangle inequality case, and assumed that each

product i consists of Di different items having their own processing times and due dates.

Notice that the latter assumption implies that the length of the input of their problem is

O(mn2 +
∑n
i=1Di), while it is O(mn2) for our problem. Brucker et al. considered sequence

independent setup times. Both papers did not study the continuous case.

The rest of the paper is organized as follows. In Section 2, solution procedures are

presented for the triangle inequality case. They are combinations of enumeration, dynamic

programming and linear programming techniques. In Section 3, the case of a given number

of products is studied. The problem is proved NP-hard even if there are n = 2 products.

Dynamic programming algorithms are developed for the discrete case, which are linear in

m and exponential in n. An application of the obtained results for a production line design

problem is discussed in Section 4. The paper concludes with a summary of the results and

suggestions for future research.

2 The triangle inequality case

In this section we assume that the setup times satisfy the triangle inequality (1). A lot

shifting technique can be used to show that there exists an optimal solution for the problem

R|∆slij, β|γ, β ∈ {cntn, dscr}, γ ∈ {Cmax, Lmax}, in which each product is produced in at

most one lot on each machine. In the rest of this section, we consider only such schedules

and assume that any schedule is fully specified if for each machine we are given a set of

products to be manufactured, their sequence and the corresponding lot sizes.

Let us introduce an m× n allocation matrix Y = ||yli|| such that

yli =
{

1, if product i is manufactured on machine l,
0, otherwise.

We call an allocation matrix Y feasible if {l | yli = 1} ⊆Mi and
∑m
l=1 yli ≥ 1 for i = 1, . . . , n.

The total number of feasible allocation matrices is O (Πm
l=12

nl) = O (2mnmax) . Given a feasible

allocation matrix Y , let S(l, Y ) denote the set of products allocated to machine l. The
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matrix Y also induces a set P (Y, l) of product permutations consistent with Y for each

machine l:

P (Y, l) =
{

(i
(l)
1 , . . . , i

(l)
kl

) | i(l)1 , . . . , i
(l)
kl
∈ S(l, Y ), kl = |S(l, Y )|

}
, l = 1, . . . ,m.

Given permutation π(l) = (i
(l)
1 , . . . , i

(l)
kl

) ∈ P (Y, l), the total setup time on machine l can be

calculated as:

t(π(l), l) := s
l0i

(l)
1

+
kl−1∑
j=1

s
li

(l)
j i

(l)
j+1
.

A schedule is fully specified if we are given an allocation matrix Y, permutations π(l) ∈

P (Y, l), l = 1, . . . ,m, and an m × n matrix of lot sizes X = ||xli||, which is consistent with

the allocation matrix Y :

q0
liyli ≤ xli, l ∈Mi, i = 1, . . . , n, Di ≤

m∑
l=1

xli ≤ Bi, i = 1, . . . , n.

Here xli is the size of the lot of product i allocated to machine l. The total number of (m+1)-

tuples (Y, π(1), . . . , π(m)), where π(l) ∈ P (Y, l), l = 1, . . . ,m, is equal to O (Πm
l=1(2

nlnl!)) =

O (2mnmax(nmax!)m) .

The problem R|∆slij, β|γ, β ∈ {cntn, dscr}, γ ∈ {Cmax, Lmax}, can be solved by the

following two-stage procedure. In the first stage, a complete enumeration of all feasible

allocations Y, and given Y , all m-tuples of permutations (π(1), . . . , π(m)), π(l) ∈ P (Y, l), l =

1, . . . ,m, is carried out. In the second stage, for each relevant (m+1)-tuple (Y, π(1), . . . , π(m)),

a lot-sizing subproblem is formulated as a linear program with O(mn) variables. For problem

R|∆slij, β|Cmax, the lot-sizing subproblem is

Minimize Cmax, subject to (2)

t(π(l), l) +
∑
i∈Nl

plixli ≤ Cmax, l = 1, . . . ,m, (3)

Di ≤
∑
l∈Mi

xli ≤ Bi, i = 1, . . . , n, (4)

q0
liyli ≤ xli ≤ Diyli, l = 1, . . . ,m, i = 1, . . . , n. (5)

For problem R|∆slij, β|Lmax, the lot-sizing subproblem is

Minimize Lmax, subject to (4)-(5) and

s
l0i

(l)
1

+
k−1∑
j=1

s
li

(l)
j i

(l)
j+1

+
k∑
j=1

p
li

(l)
j
x
li

(l)
j
−d

i
(l)
k

≤ Lmax, k = 1, . . . , kl, l = 1, . . . ,m,

where (i
(l)
1 , . . . , i

(l)
kl

) = π(l). The variables are Cmax, Lmax and xli, l = 1, . . . ,m, i = 1, . . . , n.

They are restricted to integer and rational numbers if β = dscr and β = cntn, respectively.
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In the continuous case, the lot-sizing subproblems can be solved in polynomial time by the

ellipsoid method of Shor [21] and Khachiyan [10] or the strongly polynomial time algorithm

of Vavasis and Ye [23]. In the discrete case, the algorithm of Lenstra [11] can be used,

which is polynomial if the number of variables, O(mn), is a constant. Thus, the problem

R|∆slij, β|γ, β ∈ {cntn, dscr}, γ ∈ {Cmax, Lmax}, can be solved in O(τβ2mnmax(nmax!)m) time,

where τβ is the running time of the corresponding linear programming (β = cntn) or integer

linear programming (β = dscr) algorithm.

The above two-stage solution procedure can be adjusted for the following case, in which

the triangle inequality is violated. Assume that the minimal lot sizes incur sufficiently long

minimal lot processing times p0
li := q0

lipli such that, though the triangle inequality (1) is

violated, the following inequalities are satisfied:

slij + sljk + p0
lk ≥ slik, l ∈Mi ∩Mj ∩Mk, i = 0, 1, . . . , n, j = 1, . . . , n, k = 1, . . . , n. (6)

In the algorithm for this case, we add p0
li to the corresponding setup times and, for each

feasible allocation matrix Y, deduct quantities q0
liyli from the corresponding demands, thus

obtaining an equivalent situation with the new demands D̃i(Y ), new upper bounds B̃i(Y ),

new (zero) minimal lot sizes and new setup times s̃lij for which the triangle inequality is

satisfied:

D̃i(Y ) := Di −
m∑
l=1

q0
liyli, B̃i(Y ) := Bi −

m∑
l=1

q0
liyli, i = 1, . . . , n,

s̃lij := slij + p0
li, l ∈Mi ∩Mj, i = 1, . . . , n, j = 1, . . . , n,

q̃0
li := 0, l ∈Mi, i = 1, . . . , n.

We stress that the new values of s̃lij and q̃0
li do not depend on matrix Y , while the new

demands and upper bounds depend on it. An optimal solution found by the modified algo-

rithm for the problem R|slij, β|γ, β ∈ {cntn, dscr}, γ ∈ {Cmax, Lmax}, with the inequalities

(6) satisfied can be easily transformed into an optimal solution of the original problem.

The running time O(τβ2mnmax(nmax!)m) of the suggested algorithms can be reduced by

about a factor of (nmax!)m in the case of Cmax criterion by using a dynamic programming

algorithm, which is similar to the well-known algorithm of Held and Karp [9] developed for

the TSP with triangle inequality. A description of such an algorithm is given in the following

theorem.

Theorem 1 The problem R|∆slij, β|Cmax, β ∈ {cntn, dscr}, is solvable in O(mn2
max2nmax +

τβ2mnmax) time.
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Proof. Recall that S(l, Y ) denotes the set of products allocated to machine l in accordance

with the allocation matrix Y . Let π∗(l, Y ) denote an optimal permutation of products of

the set S(l, Y ). Permutation π∗(l, Y ) minimizes the total setup time t(π, l) on the set of

permutations π = (i1, i2, . . . , i|S(l,Y )|), ij ∈ S(l, Y ), j = 1, . . . , |S(l, Y )|, i0 = 0. We now

show how to construct the optimal values T ∗(l, Y ) := t(π∗(l, Y ), l) for all feasible allocation

matrices Y and l = 1, . . . ,m. We will use a dynamic programming algorithm, which is similar

to the algorithm of Held and Karp [9].

In our algorithm values T (l, S, i) are recursively computed, where T (l, S, i) is the mini-

mum total setup time for processing a set of products S ⊆ Nl on machine l, l = 1, . . . ,m,

provided that product i ∈ S is processed last. The initialization is T (l, S, i) = sl0i for

S = {i}, i ∈ Nl, l = 1, . . . ,m, and the recursion for S ⊆ Nl, |S| = 2, 3, . . . , nl, is given by

T (l, S, i) = min
j∈S\{i}

{
T (l, S\{i}, j) + slji

}
.

For any set S(l, Y ), the minimum total setup time T ∗(l, Y ) can be calculated as T ∗(l, Y ) =

mini∈S(l,Y ){T (l, S(l, Y ), i)} in O(|S(l, Y )|) time. All the relevant values T ∗(l, Y ) can be

computed in O
(∑m

l=1

∑nl
k=0 k(k − 1)

(
nl

k

))
= O(mn2

max2nmax) time. Given Y and T ∗(l, Y ),

l = 1, . . . ,m, an optimal lot-sizing decision can be made in O(τβ) time. Then the optimal

Cmax value, C∗max, can be determined inO(mn2
max2nmax+τβ2mnmax) time by enumerating all the

feasible allocation matrices Y. If C∗max is found for the values T ∗(l, Y ∗), l = 1, . . . ,m, then the

corresponding optimal permutations π∗(l, Y ∗), l = 1, . . . ,m, can be found in O(mnmax) time

by backtracking the dynamic programming algorithm described above. Thus, the problem

R|∆slij, β|Cmax, β ∈ {cntn, dscr}, can be solved in O(mn2
max2nmax + τβ2mnmax) time, as

indicated in the theorem.

If the triangle inequality (1) is violated but the inequalities (6) hold, the algorithm

described in Theorem 1 can be modified in the same fashion as it is suggested for the

two-stage procedure given before this theorem. To see this, notice that the algorithm in

Theorem 1 works with the setup times, and the modified setup times s̃lij do not depend on

matrix Y .

3 Given number of products

In this section we consider the case, in which the number of products n is a given constant.

Firstly, we will show that all four versions of the problem R|slij, β|γ are NP-hard if there are
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at least 2 products. Then we will present dynamic programming algorithms for the problems

R|slij, dscr|Cmax and R|slij, dscr|Lmax, which are linear in m and exponential in n. These

results are novel and apply to the practically relevant situations, in which there is a small

number of products and a large number of machines.

Theorem 2 For any given n ≥ 2, the problem R|slij, β|γ, β ∈ {cntn, dscr}, γ ∈

{Cmax, Lmax}, is NP-hard, even if all setup times are equal, all minimal lot-sizes are equal to

zero, all processing times are product independent, all demands are equal, all upper bounds

Bj are equal to infinity, and any two processing times differ by at most a factor of 2.

Proof. Assume that n = 2. The case n ≥ 3 can be handled similarly by introducing dummy

products. We will use a reduction from the following NP-complete special case of the problem

Partition (see, e.g., Schuurman and Woeginger [19]), which we call Bounded Partition:

Given 2k+1, where k ≥ 3, positive integer numbers e1, . . . , e2k and E, which satisfy
∑2k
l=1 el =

2E and E
k+1

< el <
E
k−1

, l = 1, . . . , 2k, is there a subset X ⊂ K := {1, . . . , 2k} such that∑
l∈X el = E? Notice that set X is a solution to Bounded Partition only if |X| = k.

Furthermore, er/el ≤ (k + 1)/(k − 1) ≤ 2 for any r and l from the set K.

Given an instance of Bounded Partition, we construct the following instance of the

problem R|slij, β|γ. Calculate A = Π2k
r=1er. Set n = 2, m = 2k, Dj = E, Bj = ∞, dj = 2A,

plj = A/el, slij = A (j 6= i), and q0
lj = 0 for i = 0, 1, 2, j = 1, 2, and l = 1, . . . , 2k. Observe

that any two processing times differ by at most a factor of 2: pli/prj = er/el ≤ 2, l ∈ K,

r ∈ K, i = 1, 2. Since logA =
∑2k
r=1 log er, our reduction is polynomial with respect to the

input length of Bounded Partition.

We show that Bounded Partition has a solution if and only if there exists a feasible

schedule for the constructed instance of the problem R|slij, β|γ, γ ∈ {Cmax, Lmax}, such that

Cmax ≤ 2A, or equivalently, Lmax ≤ 0. Consider a feasible schedule for which Cmax ≤ 2A.

Since all setup times are equal to A, each machine l can process at most el units of the same

product within the remaning A available time units. Denote by X the set of machines each

of which processes product 1. Then the following inequlities must be satisfied:
∑
l∈X el ≥

D1 = E and
∑
l∈K\X el ≥ D2 = E. We deduce that

∑
l∈X el = E, i.e., set X is a solution for

Bounded Partition. Conversely, if some set X is a solution to Bounded Partition,

then for a schedule, in which each machine l ∈ X process el units of product 1, and each

machine r ∈ K\X process er units of product 2, we have that the demand of E units for

each product is satisfied, Cmax ≤ 2A and Lmax ≤ 0, as required.
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We now pass to describing a dynamic programming algorithm for the problem

R|slij, dscr|Cmax. Notice that the triangle inequality is not required to be satisfied for this

problem. Our algorithm assigns product lots to machines 1, . . . ,m in this order, and enu-

merates the total numbers of products assigned so far, the product assigned last, and the

completion time of the current machine. First of all, we determine an upper bound on the

optimal Cmax value:

C∗max ≤ T := max
1≤l≤m

{
∑
j∈Nl

pljBj + nl max
i,j∈Nl

{slij, sl0j}} ≤ nmax(pmaxBmax + smax), (7)

where C∗max is the optimal Cmax value, pmax = max{pli | l ∈ Mi, i = 1, . . . , n}, smax =

max{max{slij | l ∈ Mi ∪Mj, i, j = 1, . . . , n},max{sl0j | l ∈ Mj, j = 1, . . . , n}}, and Bmax =

max{Bi | i = 1, . . . , n}.

In our algorithm, values Cl(z1, . . . , zn, j, t) are recursively computed, where

Cl(z1, . . . , zn, j, t) is the minimum Cmax value for a partial schedule, in which zi units of

product i, i = 1, . . . , n, are processed on the machines 1, . . . , l, product j ∈ Nl is processed

last on machine l, and the last unit of this product completes at time t. The initializa-

tion is C0(z1, . . . , zn, j, t) = 0 for (z1, . . . , zn, j, t) = (0, . . . , 0), and C0(z1, . . . , zn, j, t) = ∞

for (z1, . . . , zn, j, t) 6= (0, . . . , 0). The recursion for l = 1, . . . ,m, zi ∈ {0, 1, . . . , Bi},

j = 0, 1, . . . , nl, and t = 0, 1, . . . , T, is given by the following formula.

Cl(z1, . . . , zn, j, t)=


mini∈Nl−1∪{0},t∈{0,1,...,T}{Cl−1(z1, . . . , zn, i, t)}, if (j, t)=(0, 0),

mini∈(Nl∪{0})\{j},δ∈{q0lj ,q
0
lj

+1,...,zj}{max{t,
Cl(z1, . . . , zj−1, zj−δ, zj+1, . . . , zn, i, t−(slij+δplj))}}, if (j, t) 6=(0, 0).

Here (j, t) = (0, 0) means that no product is processed on the corresponding machine.

The optimal objective function value C∗max can be determined from

C∗max = min
{
Cm(z1, . . . , zn, i, t) |
i ∈ Nm ∪ {0}, t ∈ {0, 1, . . . , T}, zk ∈ {Dk, Dk + 1, . . . , Bk}, k = 1, . . . , n

}
,

and the corresponding optimal schedule can be found by backtracking.

The algorithm runs in

O

(
m∑
l=1

(
Πn
j=1(Bj + 1)n2

l T (Bmax + 1)
))

=

O(mn2
maxT (Bmax + 1)n+1) = O

(
mn3

max(Bmax + 1)n+1(smax + pmaxBmax)
)

(8)

time, which is pseudopolynomial if n is a constant. The idea of this algorithm is different

from the other dynamic programming algorithms derived for the batch scheduling problems.
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To the best of our knowledge, in the parallel machine case, all of them are exponential in m,

while our algorithm is linear in m.

If the setup times satisfy the triangle inequality, then the running time of the above

algorithm can be reduced by using the fact that there exists an optimal solution in which each

product has at most one lot on each machine. If the setup times are sequence independent,

then the order of the (non-empty) lots on the same machine is immaterial. This fact can

also be used to reduce the time complexity of the above algorithm.

Our algorithm for the problem R|slij, dscr|Lmax is slightly different from the algorithm

for the problem R|slij, dscr|Cmax. It also enumerates the completion time of the current

machine, but due to the different objective function, it needs to enumerate more such values.

Specifically, the value of Cmax for an optimal solution to the problem R|slij, dscr|Lmax can

be greater than T, where T is given in (7). However, it does not exceed T + dmax, where

dmax = max{di | i = 1, . . . , n}. Indeed, assume the contrary: Ci > T + dmax for some

product i in an optimal solution. In this case, the optimal value L∗max of the objective

function satisfies

L∗max ≥ Ci − di > T + dmax − di ≥ T. (9)

However, from (7) we know that there exists a feasible solution, in which Ci−di ≤ T−di ≤ T

for all i = 1, . . . , n, i.e., Lmax ≤ T , which contradicts (9). We deduce that the machine com-

pletion times can be limited by T + dmax in the dynamic programming for the problem

R|slij, dscr|Lmax. In our algorithm for this problem, values Ll(z1, . . . , zn, j, t) are recursively

computed, where Ll(z1, . . . , zn, j, t) is the minimum Lmax value for a partial schedule, in

which zi units of product i, i = 1, . . . , n, are processed on all the machines 1, . . . , l, prod-

uct j ∈ Nl is processed last on machine l, and the last unit of this product completes

at time t. The initialization is L0(z1, . . . , zn, j, t) = 0 for (z1, . . . , zn, j, t) = (0, . . . , 0), and

L0(z1, . . . , zn, j, t) = ∞ for (z1, . . . , zn, j, t) 6= (0, . . . , 0). The recursion for l = 1, . . . ,m,

zi ∈ {0, 1, . . . , Bi}, j = 0, 1, . . . , nl, and t = 0, 1, . . . , T + dmax, is given by the following

formula.

Ll(z1, . . . , zn, j, t)=


mini∈Nl−1∪{0},t∈{0,1,...,T}{Ll−1(z1, . . . , zn, i, t)}, if (j, t)=(0, 0),

mini∈(Nl∪{0})\{j},δ∈{q0lj ,q
0
lj

+1,...,zj}{max{t− dj,
Ll(z1, . . . , zj−1, zj−δ, zj+1, . . . , zn, i, t−(slij+δplj))}}, if (j, t) 6=(0, 0).

The optimal objective function value can be determined from

L∗max = min
{
Lm(z1, . . . , zn, i, t) |

10



i ∈ Nm ∪ {0}, t ∈ {0, 1, . . . , T}, zk ∈ {Dk, Dk + 1, . . . , Bk}, k = 1, . . . , n
}
,

and the corresponding optimal schedule can be found by backtracking. The time complexity

estimation of this algorithm can be obtained from that for the Cmax criterion by replacing

T with T + dmax in (8). Thus, we have

Theorem 3 The problems R|slij, dscr|Cmax and R|slij, dscr|Lmax are solvable in

O (mn3
max(Bmax + 1)n+1(smax + pmaxBmax)) and O(mn3

max(Bmax + 1)n+1(smax + pmaxBmax+

dmax)) time, respectively.

4 Extension for a production line design problem

Consider the following problem. A production line has to be designed for a cyclic execution

of n non-intersecting groups of operations on the same machine part, where each group i

consists of Di identical operations. The production line comprises m workstations and, in

each cycle, every operation has to be executed exactly once on one of the workstations

eligible for its execution. A transporting equipment like a conveyor is used to move the

machine part from workstation l to workstation l + 1, l = 1, . . . ,m − 1. Operations of the

same workstation are performed sequentially. Furthermore, a setup time slij is needed if an

operation of group j is performed after an operation of group i on machine l. Precedence

relations are given on the set of groups of operations. If group i precedes group j, which we

denote as i→ j, then there is a one-to-one correspondence between the operations of groups

i and j (which implies Di = Dj), and each operation of group j cannot start earlier than

the corresponding operation of group i. If o(i) and o(j) are the above mentioned operations

of groups i and j, and o(i) is performed on workstation l, then o(j) cannot be performed on

any workstation r ∈ {1, . . . , l − 1} and on the workstation l before the operation o(i). The

precedence relations reflect the technological requirements for the operations. For example,

group i may consist of 10 drilling operations to make 10 identical holes, and group j may

consist of 10 threading operations, each for one of the drilled holes. The total setup and

processing time of the workstation is called its cycle time. The problem is find an allocation

of the operations to the workstations and their sequence on each workstation such that the

line cycle time is minimized. The line cycle time is the maximum among all the workstation

cycle times.

The production line design problem formulated above is closely related to the flexible

assembly line design problem studied by Bukchin and Tzur [6]. However, in their problem

11



the setup times are negligibly small, the number of workstations is the decision variable,

and the objective is to minimize the cost of the operations plus the cost of the workstations,

provided that an upper bound on the line cycle time is not exceeded.

It is easy to see that our production line design problem can be modeled as the problem

R|slij, dscr|Cmax with the additional precedence constraints given on the set of products, and

the assumptions q0
lj = 1, l ∈ Mj, and Dj = Bj, j = 1, . . . , n. In this problem, the products

will represent the groups of operations, and the machines will represent the workstations.

We will denote this problem as R|slij, dscr, precLD, q0
lj = 1, Dj = Bj|Cmax, where descriptor

precLD indicates that there are precedence constraints on the set of products specific for the

production line design (LD) problem.

The dynamic programming algorithm for the problem R|slij, dscr|Cmax presented in Sec-

tion 3 can be easily adapted to handle the problem R|slij, dscr, precLD, q0
lj = 1, Dj = Bj|Cmax.

The only modification is that we should limit the enumeration of the state variables z1, . . . , zn

so that zi ≥ zj if product i precedes product j. Therefore, the time complexity estimation of

this algorithm remains unchanged.

The algorithms presented in Section 2 can be adapted to solve the problem

R|slij, dscr, precLD, q0
lj = 1, Dj = Bj|Cmax with an additional constraint that each worksta-

tion l can process at most one lot of any product i ∈Ml. In the two-stage solution procedure

of Section 2 and in the algorithm described in Theorem 1, the integer linear programming

formulation should include additional constraints such that if π(l) = (i
(l)
1 , . . . , i

(l)
kl

) ∈ P (Y, l)

and i → i
(l)
j , 1 ≤ j ≤ kl, then for the lot of the product i

(l)
j on machine l, the total number

of units of this product allocated to machines 1, . . . , l should not exceed the total number of

units of product i allocated to machines 1, . . . , l− 1 and those sequenced before the product

i
(l)
j on machine l :

l∑
k=1

x
ki

(l)
j
≤

l−1∑
r=1

xri + x′li, for i→ i
(l)
j , 1≤j≤kl, i=1, . . . , n. (10)

where

x′li =

{
xli, if i ∈ {i(l)1 , i

(l)
2 , . . . , i

(l)
j−1},

0, otherwise.

Thus, the problem R|slij, dscr, precLD, q0
lj = 1, Dj = Bj|Cmax with the additional constraint

that each workstation l can process at most one lot of any product i ∈ Ml can be solved

in O(mn2
max2nmax + τ

(LD)
dscr 2mnmax) time, where τ

(LD)
dscr is the running time of the integer linear

programming algorithm for the problem (2)-(5), (10).
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5 Conclusions

We have derived the following computational complexity and algorithmic results for various

special cases of the problem R|slij, β|γ:

- The problem R|∆slij, β|Cmax, β ∈ {cntn, dscr} is solvable in O(mn2
max2nmax + τβ2mnmax)

time.

- For any given n ≥ 2, the problem R|slij, β|γ, β ∈ {cntn, dscr}, γ ∈ {Cmax, Lmax}, is

NP-hard, even if all setup times are equal, all minimal lot-sizes are equal to zero, all

processing times are product independent, all demands are equal, all upper bounds Bj

are equal to infinity, and any two processing times differ by at most a factor of 2.

- The problem R|slij, dscr|Cmax is solvable in O (mn3
max(Bmax + 1)n+1(smax + pmaxBmax))

time.

- The problemR|slij, dscr|Lmax is solvable inO(mn3
max(Bmax+1)n+1(smax+pmaxBmax+dmax))

time.

- The problem R|slij, dscr, precLD, q0
lj = 1, Dj = Bj|Cmax is solvable in O(mn3

max(Bmax +

1)n+1(smax + pmaxBmax)) time.

- The problem R|slij, dscr, precLD, q0
lj = 1, Dj = Bj|Cmax with the additional constraint

that each workstation l can process at most one lot of any product i ∈ Ml is solvable

in O(mn2
max2nmax + τ

(LD)
dscr 2mnmax) time.

The latter two results can be used for modeling and solving the production line design

problem described in Section 4. Further research can be undertaken to develop efficient

approximation algorithms for the problem R|slij, β|γ and its important special cases.
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