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Motivation (Parallel and Multiprocessor Jobs)

▶ Parallel jobs require more than one processor at the same time.
▶ Some jobs can not be performed asynchronously on modern com-

puters. Such situation takes place in multiprocessor graphics cards,
where the memory capacity of one processor is not sufficient.

▶ Many computer systems offer some kinds of parallelism. The en-
ergy efficient scheduling of parallel jobs arises in testing and reli-
able computing, parallel applications on graphics cards, computer
control systems and others.
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Speed Scaling Scheduling

Processors and Jobs
m = 2 speed-scalable processors

J = {1, . . . , n} is the set of jobs:
Vj is the processing volume (work) of job j
sizej is the number of processors required by job j

Wj :=
Vj

sizej
is the work on one processor

Parameters
Preemption and migration are characterized for the systems with
single image of the memory.
Non-preemptive instances arise in systems with distributed memory.



Homogeneous Model in Speed-scaling

If a processor runs at speed s then the energy consumption is sα units
of energy per time unit, where α > 1 is a constant (practical studies
show that α ≤ 3).

It is supposed that a continuous spectrum of processor speeds is
available.

E is the energy budget.

The aim is to find a feasible schedule with the minimum total
completion time so that the energy consumption is not greater than a
given energy budget.



Previous Research: Classic

Makespan
Drozdowski (2009): poly for parallel jobs, pmtn, rj
approx for parallel jobs, rj
Brucker (2000), Du, Leung (1989): parallel jobs: NP-hard,
strongly NP-hard for prec

Total Completion Time
Lee and Cai (1999): parallel jobs: strongly NP-hard
Schwiegelshohn et. al. (1998), J. Turek et. al. (1994):
approximation algorithms for parallel jobs
Hoogeveen (1994): single-mode jobs: NP-hard
Cai (1998): 2-approximation algorithm for single-mode jobs



Previous Research: Energy

Makespan
Pruhs, van Stee (2007), Bunde (2009): poly for single processor,
rj
approx for multiple processors, rj
Bampis et.al. (2014): approx for prec, rj

Total Completion Time
Pruhs et. al. (2008), Bunde (2009): poly for single processor
Shabtay, Kaspi (2006): approx for multiple processors

Parallel jobs
Kononov, Zakharova (2017-2022): NP-hardness and approx
Kong F. et. al. (2011): level-packing algorithms
Li K. (2012): partitioning-scheduling-supplying



Convex Program (KKT-conditions)

Two-processor Jobs
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Single-processor Jobs

∑
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NP-hardness

Even-Odd Partition Problem
A = {a1, a2, . . . , a2n0

} is the ordered set such that∑
ai∈A ai = 2C, ai < ai+1, i = 1, . . . , 2n0 − 1

a2i+1 > 3a2i for i = 1, . . . , n0 − 1.
Question: whether A can be partitioned into two subsets A1 and A2∑

ai∈A1

ai =
∑

ai∈A2

ai = C, |A1| = |A2| = n0,

A1 contains only one element from each pair a2i−1, a2i, i = 1, . . . , n0.

Theorem
Problem P2|sizej , energy|

∑
Cj is NP-hard.



Algorithm 1

Scheme
Step 1: Given an instance I of P2|sizej , energy|

∑
Cj , we generate

the instance I ′ with fully-parallelizable jobs, construct optimal
schedule S′ for jobs, corresponding to non-decreasing order of volumes
Vj , and find optimal durations pj .
Step 2: Calculate processing times of jobs for instance I:
2pj

sizej
, j = 1, . . . , n. Assign job j to the first available processor if j

requires one processor or to the two processors when both of them are
available if j is a two-processor job while keeping the order of jobs in
non-decreasing of volumes Vj .

Lemma∑
Cj(S

′) ≤
∑

C∗
j .

Theorem
A 2-approximate schedule can be found by Algorithm 1 in O(nlogn)
time for scheduling problem P2|sizej , energy|

∑
Cj .



Local improvements

1. Find blocks

2. If a block consists of an odd number of single-processor jobs,
move the last job to the next block if possible



Local improvements

1. Find blocks

2. If a block consists of an odd number of single-processor jobs,
move the last job to the next block if possible



Local improvements inside blocks



Algorithm 1 with Local Improvements (Algorithm 2)

Step 1. Construct a schedule by Algorithm 1 and find blocks in the
solution.

Step 2. Consequently apply the local improvements between blocks.

Step 3. Apply local improvements inside blocks to the given solution.

Step 4. Return the found solution.



Genetic Algorithm

1: Construct the initial population of k permutations.
2: Until termination condition is met, perform

for i← 1 to αk

2.1 Select two parent permutations π1 and π2.
2.2 Construct (π1′, π2′) = Cross(π1, π2).
2.3 Apply insert mutation to permutations π1′ and π2′.
2.4 Compute the objective value of the offspring.

3: Return the best found solution.



Details

Initial population: problem specific constructive heuristic.

Selection: ranking.

Crossover: OPX.

Stopping criteria: quantity of fitness calculations.

We use the classic restarting rule.

OPX crossover



Experimental evaluation
num A2 LB

1 0.63 1.04
2 0.80 1.97
3 0.85 3.11
4 0.94 1.39
5 1.05 1.31
6 1.15 0.94
7 1.27 1.61
8 1.27 2.63
9 1.37 1.18

10 1.59 1.21
11 1.70 2.14
12 1.75 1.90
13 1.89 2.68
14 1.99 1.56
15 2.43 2.89

num A2 LB
16 2.47 2.22
17 2.68 1.60
18 2.73 2.90
19 3.00 1.82
20 3.27 2.90
21 3.39 2.07
22 3.72 0.84
23 3.84 2.45
24 3.90 1.89
25 3.92 2.26
26 3.93 3.67
27 3.96 2.16
28 4.13 2.25
29 4.32 1.63
30 4.39 2.73

Relative deviation in percentage of GA from Algorithm 2 solutions
(A2) and lower bound (LB).



Experimental evaluation

Structure of solutions



Further Research

▶ More accurate selections in local improvements.
▶ Adaptive genetic algorithm.
▶ Optimized crossover operators.
▶ Adaptation of the GA to scheduling problems with different re-

sources.
▶ Statistical analyzes of the experimental results.
▶ Theoretical analysis of the genetic algorithm.



Thank you for your attention!


