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Problem Statement

J , |J | = n, is the set of jobs.

M, |M| = m, is the set of machines.

Single-stage statements and multi-stage systems.

pvj the duration (processing time) of operation v of job j.

Kl = {1, . . . , kl} is the set of positions on machine l.

Requisitions of jobs: Xi,l is the subset of jobs (operations),

which can be performed in position i ∈ Kl of machine l.

The goal is to assign jobs (or their operations) to positions of

machines so that a polynomially computable regular criterion

has the minimum value.
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Motivation

Technological Constraints

Technological requisitions in production systems and

multi-processor computer systems, where the order of job execution

is in�uenced by setup times, �xed routes, working shifts, structural

constraints and other factors.

Optimal Recombination

Given two parent permutations of jobs π1 = (π1
1, . . . , π

1
n) and

π2 = (π2
1, . . . , π

2
n). It is required to �nd an o�spring permutation

π′ = (π′1, . . . , π
′
n) such that

(I) π′i = π1
i or π′i = π2

i for all i = 1, . . . , n;

(II) π′ has the minimum objective value over all permutations

satisfying condition (I).

Then jobs π1
i and π2

i compose requisition Xi,1 for position i of the
machine.
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Single Processor Problem with Job Requisitions

Input Data

Jobs j ∈ J : release date rj , due date dj , duration (processing

time) pj and weight wj .

Job requisitions: Xi, i = 1, . . . , n = |J |.

Criteria

1|rj = 0, dj , wj |
∑

j wjUj (the weighted number of tardy jobs);
1|rj , dj |Lmax = maxj Lj (the maximum lateness);
1|rj , dj |

∑
j Uj (the number of tardy jobs);

1|rj , dj |
∑

j Tj (the total tardiness);
1|rj = 0, Cj ≤ dj , wj |

∑
j wjCj (the weighted total completion time);

1|rj |
∑

j Cj (the total completion time);
1||Cmax = maxj Cj (the makespan);

2||Cmax and 2|rj = r, dj = d|Lmax.
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NP-hardness

Ordered 2-Partition Problem

Given ordered set A = {a1, a2, . . . , a2n0} and weight ei of each
element ai ∈ A such that

∑
ai∈A ei = 2E and

ei < ei+1, i = 1, . . . , 2n0 − 1.
The question is to decide whether A can be partitioned into two

subsets A1 and A2 so that∑
ai∈A1

ei =
∑
ai∈A2

ei = E, |A1| = |A2| = n0,

and subset A1 contains only one element from each pair

a2i−1, a2i, i = 1, . . . , n0.
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NP-hardness

Properties

A schedule is called non-idle if the processor is no idle during the

interval [rmin, dmax].
An instance of the problem has the non-idle property if there is no

feasible schedule that is not non-idle.

Reduction

NP-hardness proofs are based on the polynomial reduction of the

Ordered 2-Partition Problem to the decision version of the

scheduling problem.

The obtained instance of the decision problem has the non-idle

property.

Basic jobs j correspond to elements aj and job requisitions contain

pairs a2i−1, a2i.

We have threshold values and additional critical jobs.

It is required to partition basic jobs into two parts.
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1|rj = 0, dj = d, wj, X
i|
∑

j wjUj

The number of jobs n = 2n0.

Job characteristics pj = wj = ej , dj = E, j ∈ J .
Job requisitions Xi+n0 = Xi = {2i− 1, 2i}, i = 1, . . . , n0.

Threshold value
∑

j wjUj(π) ≤ E.

 

1      2                                          n0 

1      3                                        2n0-1 

2      4                                            2n0 

n0+1   n0+2                                       2n0 

1         3                                         2n0-1 

2         4                                            2n0 

E 
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1|rj, dj, X i|γ, γ ∈ {Lmax;
∑

j Uj;
∑

j Tj}

The number of jobs n = 2n0 + 1.
Job characteristics:

pj = ej , dj = 2E + 1, rj = 0 for j = 1, . . . , 2n0;

p2n0+1 = 1, r2n0+1 = E, d2n0+1 = E + 1.
Job requisitions:

Xi+n0+1 = Xi = {2i− 1, 2i}, i = 1, . . . , n0;

Xn0+1 = {2n0 + 1}.
Threshold value Lmax(π) ≤ 0 (

∑
j Uj(π) ≤ 0 or

∑
j Tj(π) ≤ 0).

 

n0+1 

2n0+1 

1      2                                          n0 

1      3                                        2n0-1 

2      4                                            2n0 

n0+2   n0+3                                   2n0+1 

 

1         3                                         2n0-1 

2         4                                            2n0 

E E+1 
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1|rj = 0, Cj ≤ dj, wj, X
i|
∑

j wjCj

The number of jobs n = 2n0 + 1.
Job characteristics:

pj = wj = ej , dj = 2E + 1 for j = 1, . . . , 2n0;

p2n0+1 = 1, w2n0+1 = 0, d2n0+1 = E + 1.
Job requisitions:

Xi+n0+1 = Xi = {2i− 1, 2i}, i = 1, . . . , n0;

Xn0+1 = {2n0 + 1}.
Threshold value

∑
j wjCj(π) ≤

∑
1≤i≤j≤2n0

eiej + E.

 

n0+1 

2n0+1 

1      2                                          n0 

1      3                                        2n0-1 

2      4                                            2n0 

n0+2   n0+3                                   2n0+1 

 

1         3                                         2n0-1 

2         4                                            2n0 

E E+1 
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1|rj, X i|
∑

j Cj

The number of jobs n = 2n0 + 3.
Job characteristics:

pj = ej , rj = 0 for j = 1, . . . , 2n0;

p2n0+1 = p2n0+2 = p2n0+3 = 1,
r2n0+1 = 0, r2n0+2 = E + 1, r2n0+3 = 2E + 2.
Job requisitions:

Xi+n0+2 = Xi+1 = {2i− 1, 2i}, i = 1, . . . , n0;

X1 = {2n0 + 1}, Xn0+2 = {2n0 + 2}, X2n0+3 = {2n0 + 3}.
Threshold value

∑
j Cj(π

′) ≤ L := (1) + (E + 2) + (2E + 3) +(∑n0
j=1(n0 − j + 1)(e2j−1 + e2j) + 1n0 + (E + 2)n0

)
.

 

2n0+3 

2n0+3 2n
0
+1 

n0+2 

2n0+2 

2      3                                     n0+1 

1      3                                        2n0-1 

2      4                                            2n0 

n0+3   n0+4                                   2n0+2 

 

1         3                                         2n0-1 

2         4                                            2n0 

E+1 E+2 

1 
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Job-shop Scheduling with Job Requisitions

Input Data

J = {1, . . . , n} is the set of jobs.
M = {1, . . . ,m} is the set of machines.

nj is the number of sequential operations for job j.

Operation Ojv has duration pvj and uses machine Lvj ∈M.

Lj = (L1j , L2j , . . . , Lnj ,j) may be di�erent for di�erent jobs.

Requisitions

Ol = {Ojv : Lvj = l} is the set of operations for machine

l, |Ol| = kl.
Xi,l is the requisition for position i = 1, . . . , kl of machine l ∈M.

Criteria

makespan Cmax = {Cj : j ∈ J }
maximum lateness Lmax = {Cj − dj : j ∈ J }
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J2|X i,l|Cmax

Input Data

m = 2, n = 2n0 + 2.
Job characteristics:

p1,j = 0, p2,j = ej , j = 1, . . . , 2n0;
p1,2n0+1 = 2E, p2,2n0+1 = E;
p2,2n0+2 = 2E, p1,2n0+2 = E.

Job Requisitions

X11 = {2n0 + 1}, X21 = {2n0 + 2},

Xi+n0+2,2 = Xi,2 = {2i− 1, 2i}, i = 1, . . . , n0,

Xn0+1,2 = {2n0 + 2}, Xn0+2,2 = {2n0 + 1}.

Threshold

Cmax({πl}l∈M) 6 4E.
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J2|X i,l|Cmax

 

2n0+1 

3E 

2n0+2 

1      2                                           n0 

1      3                                        2n0-1 

2      4                                            2n0 

n0+3   n0+4                                   2n0+2 

 

1         3                                         2n0-1 

2         4                                            2n0 

E 2E 

n0+1 n0+2 

2n0+1 2n0+2 

1 2 
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Flow-shop Scheduling with Job Requisitions

Input Data

J = {1, . . . , n} is the set of jobs.
M = {1, . . . ,m} is the set of machines.

Job j ∈ J is processed on 1→ 2→ · · · → m.

Operation Ojl has duration plj and uses machine l ∈M.

Flow-shop with missing operations: plj = 0 means that job j on
machine l is not executed. a

aEremeev A., Kovalenko Yu.: On solving travelling salesman problem with
vertex requisitions (2017)

Requisitions

Ol = {Ojl : plj 6= 0} is the set of operations for l, |Ol| = kl.
Xi,l is the requisition for position i = 1, . . . , kl of machine l ∈M.

Criteria

Cmax = {Cj : j ∈ J }, Lmax = {Cj − dj : j ∈ J }
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F3|Miss−Oper,X i,l|Cmax

Input Data

m = 3, n = 2n0 + 2.
Job characteristics:

p1,i = p3,i = ei, p2,i = 0, i = 1, . . . , 2n0;
p1,2n0+1 = p3,2n0+2 = E, p2,2n0+1 = p2,2n0+2 = 2E;
p3,2n0+1 = p1,2n0+2 = 0.

Job Requisitions

Xi,1 = Xn0+1+i,1 = {2i− 1, 2i}, i = 1, . . . , n0,
Xn0+1,1 = {2n0 + 1},
X1,2 = {2n0 + 2}, = X2,2 = {2n0 + 1},
Xi,3 = Xn0+1+i,3 = {2i− 1, 2i}, i = 1, . . . , n0,
Xn0+1,3 = {2n0 + 2}.

Threshold

Cmax({πl}l∈M) 6 4E.
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F3|Miss−Oper,X i,l|Cmax

 

2n0+2 

3E 

1      2                   n0 

1      3                  2n0-1 

2      4                     2n0 

n0+2   n0+3            2n0+1 

 

1         3                   2n0-1 

2         4                         2n0 

E 2E 

n0+1 

2n0+2 2n0+1 

1 2 

2n0+1 

3E 

1      2                      n0 

1      3                  2n0-1 

2      4                     2n0 

n
0
+2   n

0
+3          2n

0
+1 

1          3              2n0-1 

2          4                   2n0 

E 2E 

n0+1 
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Solving Approach, |X i| ≤ 2

Main Idea

Ḡ = (Xn, X, Ū) is the bipartite graph.

Ū = {{i, x} : i ∈ Xn, x ∈ Xi} is the set of edges.
Vertices of the left part ↔ positions.

Vertices of the right part ↔ jobs.

There is a one-to-one correspondence between the set of

perfect matchings W in the graph Ḡ and the set Π of feasible

permutations to a problem instance I(γ, Xi)a.

aSerdyukov A.I. (1978); Eremeev A., Kovalenko Yu. (2017)

Types of Edges

An edge {i, x} ∈ Ū is called special if {i, x} belongs to all

perfect matchings in the graph Ḡ.

All edges, except for the special edges and those adjacent to

them, are slit into cycles.
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Finding special edges and cycles in graph Ḡ, O(n)

Step 1 (Initialization). Assign Ḡ′ := Ḡ.
Step 2. Repeat Steps 2.1-2.2 while it is possible:

Step 2.1 (Solvability test). If the graph Ḡ′ contains a vertex of

degree 0 then, problem I(γ, Xi) is infeasible, terminate.

Step 2.2 (Finding a special edge). If the graph Ḡ′ contains a
vertex z of degree 1, then store the corresponding edge {z, y} as a
special edge and remove its endpoints y and z from Ḡ′.

The cycles of the graph Ḡ can be computed in O(n) time

using the Depth-First Search algorithm.

q(Ḡ) = q(I) is the number of cycles in the graph Ḡ for

instance I(γ, Xi).

Each cycle j, j = 1, . . . , q(Ḡ), contains exactly two maximal

perfect matchings.
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Solving I(γ, X i)

Step 1. Build the bipartite graph Ḡ, identify the set of special

edges and cycles and �nd all maximal matchings in cycles.

Step 2. Enumerate all perfect matchings W ∈ W of Ḡ by

combining the maximal matchings of cycles and joining them with

special edges.

Step 3. Assign the corresponding solution π ∈ Π to each W ∈ W
and compute γ(π).
Step 4. Output the result π∗ ∈ Π, such that γ(π∗) = min

π∈Π
γ(π).

Time Complexity

O(T (γ)2q(I)), where q(I) = q(Ḡ) ≤ bn2 c and the last inequality is

tight, T (γ) is the time for computing γ.
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Example
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Almost all feasible instances

A graph Ḡ = (Xn, X, Ū) is called �good� if it satis�es the

inequality q(Ḡ) ≤ 1.1lnn.

χ̄n is the set of �good� bipartite graphs Ḡ = (Xn, X, Ū).

χn is the set of all bipartite graphs Ḡ = (Xn, X, Ū).

|χ̄n|
|χn| → 1 as n→∞ (Serdyukov A.I., 1978).

Theorem

Almost all feasible instances I(γ, Xi) with |Xi| ≤ 2 have at most

n feasible solutions and thus, they are solvable in O(T (γ)n) time.
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Almost all feasible instances

Job-shop

Job-shop scheduling problem J |Xi,l|γ, γ ∈ {Cmax, Lmax}, with job

requisitions such that |Xi,l| ≤ 2 can be solved in

O
(
1.42kmaxm(n2n2

max + nmnmaxkmax)
)
time.

Almost all instances of Jm|Xi,l|γ, γ ∈ {Cmax, Lmax}, with job

requisitions such that |Xi,l| ≤ 2 are polynomially solvable.

Flow-shop

Flow-shop scheduling problems F |Xi,l|γ, F |Miss−Oper,Xi,l|γ,
γ ∈ {Cmax, Lmax}, with job requisitions such that |Xi,l| ≤ 2 can

be solved in O (1.42nm(nm)) time.

Almost all instances of Fm|Xi,l|γ, Fm|Miss−Oper,Xi,l|γ,
γ ∈ {Cmax, Lmax}, with job requisitions such that |Xi,l| ≤ 2 are

polynomially solvable.

Yu. Zakharova Scheduling with Job Requisitions 25



MIP-model (variables)

Boolean variables

xij =

{
1, if job j is performed in position i,

0 otherwise,

i = 1, . . . , n, j ∈ Xi.

Continuous variables

yi ≥ 0 is the duration of the job in position i (auxiliary variable);

zi ≥ 0 is the release date of the job in position i (auxiliary variable);

vi ≥ 0 is the due date of the job in position i (auxiliary variable);

Ci is the completion time of a job in position i.
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MIP-model (constraints)

∑
j∈Xi

xij = 1, i = 1, . . . , n, (1)

∑
i∈Y j

xij = 1, j ∈ J , (2)

Ci ≥ Ci−1 + yi, i = 2, . . . , n, (3)

Ci ≥ zi + yi, i = 1, . . . , n, (4)

yi =
∑
j∈Xi

xijpj , i = 1, . . . , n, (5)

zi =
∑
j∈Xi

xijrj , i = 1, . . . , n, (6)

vi =
∑
j∈Xi

xijdj , i = 1, . . . , n, (7)

Ci ≥ 0, xij ∈ {0, 1}, i = 1, . . . , n, j ∈ Xi. (8)
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MIP-model (criteria)

the maximum lateness

Lmax ≥ Ci − vi, i = 1, . . . , n,

the total tardiness

T∑ =

n∑
i=1

Ti,

Ti ≥ 0, Ti ≥ Ci − vi, i = 1, . . . , n,

the total completion time

C∑ =

n∑
i=1

Ci,

the number of tardy jobs

U∑ =

n∑
i=1

Ui,

Ci ≤ vi + Ui ·BigM, Ui ∈ {0, 1}, i = 1, . . . , n.
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New MIP-model (variables)

Boolean variables

xl =

{
0, if the �rst matching is selected in cycle l,

1, if the second matching is selected in cycle l,

l = 1, . . . , q(Ḡ).

Continuous variables

yi ≥ 0 is the duration of the job in position i (auxiliary variable);

zi ≥ 0 is the release date of the job in position i (auxiliary variable);

vi ≥ 0 is the due date of the job in position i (auxiliary variable);

Ci is the completion time of a job in position i.
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New MIP-model (constraints)

Ci ≥ Ci−1 + yi, i = 2, . . . , n, (9)

Ci ≥ zi + yi, i = 1, . . . , n, (10)

yi = p0
i (1− xl) + p1

ixl, l = 1, . . . , q(Ḡ), i ∈ Nl, (11)

yi = p0
i , i = 1, . . . , n : |Xi| = 1,

zi = r0
i (1− xl) + r1

i xl, l = 1, . . . , q(Ḡ), i ∈ Nl, (12)

zi = r0
i , i = 1, . . . , n : |Xi| = 1,

vi = d0
i (1− xl) + d1

ixl, l = 1, . . . , q(Ḡ), i ∈ Nl, (13)

vi = d0
i , i = 1, . . . , n : |Xi| = 1,

Ci ≥ 0, i = 1, . . . , n, (14)

xl ∈ {0, 1}, l = 1, . . . , q(Ḡ). (15)
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MIP-model (variables)

Boolean variables

xoik =

{
1, if operation o is performed in position k on machine i,

0 otherwise,

i = 1, . . . ,m, k = 1, . . . , ni, o ∈ Xi,k.

Continuous variables

Cik ≥ 0 is the completion time of a job operation in position k of

machine i.
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MIP-model (constraints)

∑
o∈Xi,k

xoik = 1, i = 1, . . . ,m, k = 1, . . . , ni, (16)

∑
k∈Y o,i

xoik = 1, i = 1, . . . ,m, o ∈ Oi, (17)

Cik +
∑

o∈Xi,k+1

poxo,i,k+1 ≤ Ci,k+1, (18)

i = 1, . . . ,m, k = 1, . . . , ni − 1,

Ci1,k1 + po2 ≤ Ci2,k2+ (19)

BigM(1− xo1,i1,k1) +BigM(1− xo2,i2,k2)+

j ∈ J , v = 1, . . . , kj − 1, o1 = Ojv, o2 = Ojv+1,

i1 = Lv,j , i2 = Lv+1,j , k1 ∈ Y o1,i1 , k2 ∈ Y o2,i2 ,

Cik ≥ 0, xoik ∈ {0, 1}, o ∈ Xi,k, i ∈M, k = 1, . . . , ni. (20)

Yu. Zakharova Scheduling with Job Requisitions 32



New MIP-model (variables)

Boolean variables

xil =

{
0, if the �rst matching is selected in cycle l of machine i,

1, if the second matching is selected in cycle l of machine i;

i = 1, . . . ,m, l = 1, . . . , q(i).

Continuous variables

Cik ≥ 0 is the completion time of a job operation in position k of

machine i.

C(Ojv) ≥ 0 is the completion time of operation Ojv.
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MIP-model (constraints)

Cik + yi,k+1 ≤ Ci,k+1, i ∈M, k = 1, ni, (21)

C(Ojv) + pv+1,j ≤ C(Ojv+1), j ∈ J , v = 1, kj − 1, (22)

C(Ojv) ≥ CLvj ,k0vj
−BigM(xLvj ,lvj ), j ∈ J , v = 1, kj , (23)

C(Ojv) ≤ CLvj ,k0vj
+BigM(xLvj ,lvj ), j ∈ J , v = 1, kj , (24)

C(Ojv) ≥ CLvj ,k1vj
−BigM(1− xLvj ,lvj ), j ∈ J , v = 1, kj , (25)

C(Ojv) ≤ CLvj ,k1vj
+BigM(1− xLvj ,lvj ), j ∈ J , v = 1, kj , (26)

yik = p0
ik(1− xi,lik) + p1

ikxi,lik , i ∈M, k = 1, ni, (27)

C(Ojv) ≥ 0, j ∈ J , v = 1, kj , (28)

Cik ≥ 0, i ∈M, k = 1, ni, (29)

xil ∈ {0, 1}, i ∈M, l = 1, . . . , q(i). (30)
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Multi-machine Scheduling with Job Requisitions

Algorithm

The total number of positions over all machines is equal to the

number of jobs.

The multi-machine problem can be solved using the same methods

as the single-machine one.

Example

 

M1  {j1, j5}   {j9, j10} 

M2  {j3, j5}   {j4, j6}   {j6, j7}   {j2, j8} 

M3  {j2, j9}   {j7, j8}   {j1, j10} 

M4  {j11}      {j3, j4} 
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Open-shop with Job Requisitions

Statement

The order in which the jobs are processed on the machine, and the order
in which the job is processed by the machines can be chosen arbitrarily.
Position i of machine l may contain only jobs from the given subset Xi,l.

NP-hardness and Algorithm

When Xi,l = {i} for all l ∈M, we have the classic �ow-shop scheduling
problem by reversing the sense of jobs and machines (NP-hard even in
the case of three jobsa).

Using the same arguments as in the NP-hardness proof for job-shop with
job requisitions we obtain
Theorem. Open-shop scheduling problem O2|Xi,l|γ, γ ∈ {Cmax, Lmax},
is NP-hard.

An objective can not be computed in polynomial time for the �xed
sequences of jobs on machines.

aSotskov Yu., Shakhlevich N. (1993)
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Dependent and Independent Cycles
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Conclusion and Further Research

Conclusion

1 NP-hardness proofs of scheduling problems with job

requisitions.

2 Enumeration approach and MIP methods for solving single

stage and multi stage instances.

Further Research

1 Computational complexity of shop scheduling problems with

the total completion time criterion.

2 Experimental evaluation of various solving approaches.

3 New properties of cycles in bipartite graphs and parallelization.

4 Importance of solution representation.
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Thank you for your attention!
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