Эволюционные алгоритмы с адаптивным вызовом операторов для задач составления расписаний на перестановках с ресурсными ограничениями

М.Ю. Сахно

Омский филиал института математики им. С.Л. Соболева СО РАН Исследование выполнено за счет гранта Российского научного фонда № 22-71-10015, https://rscf.ru/project/22-71-10015.

Report Structure

- ▶ Genetic Algorithm with Generational Scheme
- Crossover and Mutation Operators
- Problem Statements
- ▶ Results of the Genetic Algorithm with Generational Scheme

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ Genetic Algorithm with Adaptation
- Optimized Crossover
- ▶ Conclusions and Further Research

Genetic Algorithm with Generational Scheme

- 1: Construct the initial population $P^0 = \{\pi_j^0\}$ of k permutations. Save n_e individuals with the best objective values as elites of P^0 . Put t = 0.
- 2: Until termination condition is met, perform 2.1 for $i \leftarrow 1$ to $(k n_e)/2$
 - 2.1.1 Select two parent permutations π^1 and π^2 using operator $Sel(P^t)$.
 - 2.1.2 Construct $(\pi^{1\prime}, \pi^{2\prime}) = Cross(\pi^1, \pi^2).$
 - 2.1.3 Apply the mutation operator to constructed permutations: $Mut(\pi^{1\prime})$ and $Mut(\pi^{2\prime})$ and save the result as individuals $\pi_{2i-1}^{t+1}, \pi_{2i}^{t+1}$ for population P^{t+1} .

- 2.2 Copy elites of P^t to P^{t+1} and identify elites of P^{t+1} . 2.3 Put t = t + 1.
- 3: Return the best found individual.

Crossover Operators

Cycle Crossover (CX)

Order Crossover (OX)

Crossover Operators

Partially Mapped Crossover (PMX)

One Point Crossover (1PX)

うして ふゆ く 山 マ ふ し マ う く し マ

Mutation Operators

Exchange (swap) mutation

Shift (insert) mutation

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Speed Scaling Scheduling

Processors and Jobs

 \boldsymbol{m} is the number of speed-scalable processors

 $\mathcal{J} = \{1, \ldots, n\}$ is the set of jobs: V_j is the processing volume (work) of job j $size_j$ is the number of processors required by job j $W_j := \frac{V_j}{size_j}$ is the work on one processor

Parameters

Preemption and migration are characterized for the systems with single image of the memory.

Non-preemptive instances arise in systems with distributed memory.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Homogeneous Model in Speed-scaling

If a processor runs at speed s then the energy consumption is s^{α} units of energy per time unit, where $\alpha > 1$ is a constant (practical studies show that $\alpha \leq 3$).

It is supposed that a continuous spectrum of processor speeds is available.

Problem 1

m = 2, E is the energy budget.

The aim is to find a feasible schedule with the minimum total completion time so that the energy consumption is not greater than a given energy budget.

Solution

Processor 1	10	30	40		60	70
Processor 2	20		40	40	60	70
1100033012	20			40		10

Lower Bound

Processor 1	5	10	15	20	40	60	70

Problem 2

m = 1, the jobs have release dates and deadlines.

The objective is to find a feasible schedule that minimizes the total energy consumption.

Solution

3

Lower Bound

30 instances, n = 50

Parameter values of genetic algorithm

Parameter name	Parameter value
k	200
n_e	2
P_{IPRand}	0.2
Selection	Ranking
P_{Cross}	0.8
Crossover	1PX
P_{Mut}	0.2
Mutation	Shift (insert)

Relative deviation of objective function found by the GA from the lower bound

avg: 2.03% min: 0.83% max: 3.83%

30 instances, n = 50

Parameter values of genetic algorithm found by IRACE

Parameter name	Parameter value
k	244
n_e	146
P_{IPRand}	0.43
Selection	Ranking
P_{Cross}	0.7
Crossover	1PX
P_{Mut}	0.63
Mutation	Exchange (swap)

Relative deviation of objective function found by the GA from the lower bound

avg: 1.99% min: 0.82% max: 3.86%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

30 instances, n = 50

Parameter values of genetic algorithm

Parameter name	Parameter value
k	200
n_e	2
P_{IPRand}	0.2
Selection	Ranking
P_{Cross}	0.8
Crossover	CX
P_{Mut}	0.2
Mutation	Shift (insert)

Relative deviation of objective function found by the GA from the lower bound

avg: 0.00% min: 0.00% max: 0.01%

30 instances, n = 50

Parameter values of genetic algorithm found by IRACE

Parameter name	Parameter value
k	170
n_e	64
P_{IPRand}	0.56
Selection	Tourney
TourneySize	7
P_{Cross}	0.79
Crossover	CX
P_{Mut}	0.48
Mutation	Shift (insert)

Relative deviation of objective function found by the GA from the lower bound

avg: 0.00% min: 0.00% max: 0.04%

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Time comparison for Problem 2

	GA	GA_{irace}
avg	75.2	25.7
min	2	1
\max	342	333

Table: Time in seconds

Genetic Algorithm with Adaptation

- 1: Construct the initial population $P^0 = {\pi_j^0}$ of k permutations. Save n_e individuals with the best objective values as elites of P^0 . Put t = 0.
- 2: Until termination condition is met, perform 2.1 for $i \leftarrow 1$ to $(k n_e)/2$
 - 2.1.1 Select two parent permutations π^1 and π^2 using operator $Sel(P^t)$.
 - 2.1.2 Choose crossover operator and construct $(\pi^{1\prime}, \pi^{2\prime}) = Cross(\pi^1, \pi^2)$.
 - 2.1.3 Update the weight of the chosen crossover.
 - 2.1.4 Apply the mutation operator to constructed permutations: $Mut(\pi^{1\prime})$ and $Mut(\pi^{2\prime})$ and save the result as individuals $\pi^{t+1}_{2i-1}, \pi^{t+1}_{2i}$ for population P^{t+1} .
 - 2.2 Copy elites of P^t to P^{t+1} and identify elites of P^{t+1} .
 - 2.3 Put t = t + 1.
- 3: Return the best found individual.

Adaptive Technique

- 1: Choose a crossover. The probability of choosing each operator is proportional to its weight.
- 2: Apply chosen crossover to the parent genotypes.
- 3: Update the weight of the chosen crossover:

 $\phi_a = \begin{cases} w_1, \text{if the new solution is a new global best,} \\ w_2, \text{if the new solution is better than the current one,} \\ w_3, \text{if the new solution is better than one of the parents or both.} \end{cases}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$\rho_a = \lambda \rho_a + (1 - \lambda)\phi_a.$$

Results of Genetic Algorithm with Adaptation

30 instances, n = 50

Relative deviation of objective function found by the GA with Adaptation from the lower bound for Problem 1 Crossover operators: 1PX

avg: 2.06% min: 0.83% max: 3.88%

Relative deviation of objective function found by the GA with Adaptation from the lower bound for Problem 2 Crossover operators: CX, PMX, 1PX avg: 0.00%

min: 0.00%

max: 0.01%

うして ふゆ く 山 マ ふ し マ う く し マ

Adaptation: Mutation + Crossover for Problem 1

avg: 2.13%min: 0.82%max: 3.84%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Optimal Recombination Problem (ORP)

Given two parent solutions π^1 and π^2 . It is required to find a permutation π' such that:

- (I) $\pi'_i = \pi^1_i$ or $\pi'_i = \pi^2_i$ for all i = 1, ..., n;
- (II) π' has the minimum value of objective function $E(\pi')$ among all permutations that satisfy condition (I).

Optimal recombination may be considered as a best-improving move in a large neighbourhood defined by two parent solutions.

The ORP is NP-hard, but "almost all" instances are polynomially solvable.

うして ふゆ く 山 マ ふ し マ う く し マ

Optimized Crossover

One Point Crossover (1PX)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Results of Genetic Algorithm with Optimized Crossover for Problem 1

avg: 1.95% min: 0.78% max: 3.57%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Conclusions. Results of Genetic Algorithm Problem 1

Conclusions. Results of Genetic Algorithm Problem 2

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Conclusions and Further Research

We recommend

- ► Apply IRACE for numeric parameters.
- ▶ Apply adaptation for operators.

Further Plans

- Trying Poisson Mutation
- ▶ Trying IRACE for Genetic Algorithm with Adaptation

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ