Эволюционные алгоритмы с адаптивным вызовом операторов для задач составления расписаний на перестановках с ресурсными
 ограничениями

М.Ю. Сахно

Омский филиал института математики им. С.Л. Соболева СО РАН
Исследование выполнено за счет гранта Российского научного фонда № 22-71-10015, https://rscf.ru/project/22-71-10015.

Report Structure

- Genetic Algorithm with Generational Scheme
- Crossover and Mutation Operators
- Problem Statements
- Results of the Genetic Algorithm with Generational Scheme
- Genetic Algorithm with Adaptation
- Optimized Crossover
- Conclusions and Further Research

Genetic Algorithm with Generational Scheme

1: Construct the initial population $P^{0}=\left\{\pi_{j}^{0}\right\}$ of k permutations. Save n_{e} individuals with the best objective values as elites of P^{0}. Put $t=0$.
2: Until termination condition is met, perform
2.1 for $i \leftarrow 1$ to $\left(k-n_{e}\right) / 2$
2.1.1 Select two parent permutations π^{1} and π^{2} using operator $\operatorname{Sel}\left(P^{t}\right)$.
2.1.2 Construct $\left(\pi^{1 \prime}, \pi^{2 \prime}\right)=\operatorname{Cross}\left(\pi^{1}, \pi^{2}\right)$.
2.1.3 Apply the mutation operator to constructed permutations: $\operatorname{Mut}\left(\pi^{1 \prime}\right)$ and $\operatorname{Mut}\left(\pi^{2 \prime}\right)$ and save the result as individuals $\pi_{2 i-1}^{t+1}, \pi_{2 i}^{t+1}$ for population P^{t+1}.
2.2 Copy elites of P^{t} to P^{t+1} and identify elites of P^{t+1}.
2.3 Put $t=t+1$.

3: Return the best found individual.

Crossover Operators

Cycle Crossover (CX)

Cycle $\quad 2 \rightarrow 4 \rightarrow 3 \rightarrow 2$
Order Crossover (OX)

Crossover Operators

Partially Mapped Crossover (PMX)

One Point Crossover (1PX)

Mutation Operators

Exchange (swap) mutation

Shift (insert) mutation

Speed Scaling Scheduling

Processors and Jobs
m is the number of speed-scalable processors
$\mathcal{J}=\{1, \ldots, n\}$ is the set of jobs:
V_{j} is the processing volume (work) of job j
$s i z e_{j}$ is the number of processors required by job j
$W_{j}:=\frac{V_{j}}{s i z e_{j}}$ is the work on one processor

Parameters

Preemption and migration are characterized for the systems with single image of the memory.
Non-preemptive instances arise in systems with distributed memory.

Homogeneous Model in Speed-scaling

If a processor runs at speed s then the energy consumption is s^{α} units of energy per time unit, where $\alpha>1$ is a constant (practical studies show that $\alpha \leq 3$).

It is supposed that a continuous spectrum of processor speeds is available.

Problem 1

$$
m=2, E \text { is the energy budget. }
$$

The aim is to find a feasible schedule with the minimum total completion time so that the energy consumption is not greater than a given energy budget.
Solution

Lower Bound

Problem 2

$m=1$, the jobs have release dates and deadlines.
The objective is to find a feasible schedule that minimizes the total energy consumption.
Solution

Lower Bound

Results for Problem 1

30 instances, $n=50$
Parameter values of genetic algorithm

Parameter name	Parameter value
k	200
n_{e}	2
$P_{\text {IPRand }}$	0.2
Selection	Ranking
$P_{\text {Cross }}$	0.8
Crossover $^{P_{\text {Mut }}}$	1 PX
Mutation	Shift (insert)

Relative deviation of objective function found by the GA from the lower bound

$$
\begin{aligned}
& \text { avg: } 2.03 \% \\
& \text { min: } 0.83 \% \\
& \text { max: } 3.83 \%
\end{aligned}
$$

Results for Problem 1

30 instances, $n=50$
Parameter values of genetic algorithm found by IRACE

Parameter name	Parameter value
k	244
n_{e}	146
$P_{\text {IPRand }}$	0.43
Selection $^{P_{\text {Cross }}}$	Ranking
Crossover	0.7
$P_{\text {Mut }}$	1 PX
Mutation	Exchange (swap)

Relative deviation of objective function found by the GA from the lower bound

$$
\begin{aligned}
& \text { avg: } 1.99 \% \\
& \min : 0.82 \% \\
& \max : 3.86 \%
\end{aligned}
$$

Results for Problem 2

30 instances, $n=50$
Parameter values of genetic algorithm

Parameter name	Parameter value
k	200
n_{e}	2
$P_{\text {IPRand }}$	0.2
Selection	Ranking
$P_{\text {Cross }}$	0.8
Crossover $^{P_{\text {Mut }}}$	CX
Mutation	Shift (insert)

Relative deviation of objective function found by the GA from the lower bound

$$
\begin{aligned}
& \text { avg: } 0.00 \% \\
& \min : 0.00 \% \\
& \max : 0.01 \%
\end{aligned}
$$

Results for Problem 2

30 instances, $n=50$
Parameter values of genetic algorithm found by IRACE

Parameter name	Parameter value
k	170
n_{e}	64
$P_{\text {IPRand }}$	0.56
Selection	Tourney
TourneySize	7
$P_{\text {Cross }}$	0.79
Crossover $\quad \mathrm{CX}$	
$P_{\text {Mut }}$	0.48
Mutation	Shift (insert)

Relative deviation of objective function found by the GA from the lower bound

$$
\begin{aligned}
& \text { avg: } 0.00 \% \\
& \text { min: } 0.00 \% \\
& \text { max: } 0.04 \%
\end{aligned}
$$

Time comparison for Problem 2

	$G A$	$G A_{\text {irace }}$
avg	75.2	25.7
\min	2	1
\max	342	333

Table: Time in seconds

Genetic Algorithm with Adaptation

1: Construct the initial population $P^{0}=\left\{\pi_{j}^{0}\right\}$ of k permutations. Save n_{e} individuals with the best objective values as elites of P^{0}. Put $t=0$.
2: Until termination condition is met, perform
2.1 for $i \leftarrow 1$ to $\left(k-n_{e}\right) / 2$
2.1.1 Select two parent permutations π^{1} and π^{2} using operator $\operatorname{Sel}\left(P^{t}\right)$.
2.1.2 Choose crossover operator and construct $\left(\pi^{1 \prime}, \pi^{2 \prime}\right)=\operatorname{Cross}\left(\pi^{1}, \pi^{2}\right)$.
2.1.3 Update the weight of the chosen crossover.
2.1.4 Apply the mutation operator to constructed permutations: $\operatorname{Mut}\left(\pi^{1 \prime}\right)$ and $\operatorname{Mut}\left(\pi^{2 \prime}\right)$ and save the result as individuals $\pi_{2 i-1}^{t+1}, \pi_{2 i}^{t+1}$ for population P^{t+1}.
2.2 Copy elites of P^{t} to P^{t+1} and identify elites of P^{t+1}.
2.3 Put $t=t+1$.

3: Return the best found individual.

Adaptive Technique

1: Choose a crossover. The probability of choosing each operator is proportional to its weight.
2: Apply chosen crossover to the parent genotypes.
3: Update the weight of the chosen crossover:
$\phi_{a}=\left\{\begin{array}{l}w_{1}, \text { if the new solution is a new global best, } \\ w_{2}, \text { if the new solution is better than the current one, } \\ w_{3}, \text { if the new solution is better than one of the parents or both. }\end{array}\right.$

$$
\rho_{a}=\lambda \rho_{a}+(1-\lambda) \phi_{a} .
$$

Results of Genetic Algorithm with Adaptation

30 instances, $n=50$
Relative deviation of objective function found by the GA with Adaptation from the lower bound for Problem 1
Crossover operators: 1PX

$$
\begin{aligned}
& \text { avg: } 2.06 \% \\
& \text { min: } 0.83 \% \\
& \text { max: } 3.88 \%
\end{aligned}
$$

Relative deviation of objective function found by the GA with Adaptation from the lower bound for Problem 2
Crossover operators: CX, PMX, 1PX
avg: 0.00%
$\min : 0.00 \%$
max: 0.01%

Adaptation: Mutation + Crossover for Problem 1

avg: 2.13%
min: 0.82%
max: 3.84%

Optimal Recombination Problem (ORP)

Given two parent solutions π^{1} and π^{2}. It is required to find a permutation π^{\prime} such that:
(I) $\pi_{i}^{\prime}=\pi_{i}^{1}$ or $\pi_{i}^{\prime}=\pi_{i}^{2}$ for all $i=1, \ldots, n$;
(II) π^{\prime} has the minimum value of objective function $E\left(\pi^{\prime}\right)$ among all permutations that satisfy condition (I).

Optimal recombination may be considered as a best-improving move in a large neighbourhood defined by two parent solutions.

The ORP is NP-hard, but "almost all" instances are polynomially solvable.

Optimized Crossover

One Point Crossover (1PX)

Results of Genetic Algorithm with Optimized Crossover for Problem 1

avg: 1.95%
min: 0.78%
max: 3.57%

Conclusions. Results of Genetic Algorithm Problem 1

Conclusions. Results of Genetic Algorithm Problem 2

Conclusions and Further Research

We recommend

- Apply IRACE for numeric parameters.
- Apply adaptation for operators.

Further Plans

- Trying Poisson Mutation
- Trying IRACE for Genetic Algorithm with Adaptation

Thank you for your attention!

