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Independence System 
 

U – nonempty finite set, A  2
U 

– nonempty indexed family of subsets with an 
independence axiom 

A1  A, A2  A1  A2  A. 

A – independent subsets. 

A set D = 2
U 

\ A is satisfied 

D1  D, D1  D2  D2  D. 

D – dependent subsets. 

B – bases or maximal independent subsets. 

C – circuities or minimal dependent subsets. 

S = (U, A), S = (U, B), S = (U, C) and S = (U, D) are equals independence systems. 
 

 

 

 



Independence System 
 

For any subset X  U let BX be a set of all maximal independent subsets of X (i.e. 
BX is bases of X). 

For any subset X  U let CX be a set of all minimal dependent supersets of X (i.e. 
CX is circuities of X). 

 

 

 



Graph Independence System 
 

 

Example. Let G = (V, E) be a graph. A subset I  V is an independent set if uv  E 
for any u,v  I. A system S = (V, A) where A is a family of all independent subsets 
in G is an independence system. 

A ={ , {1}, {2}, {3}, {1,2}} 

D = {{1,3}, {2,3}, {1,2,3}} 

B = {{3}, {1,2}} 

C = {{1,3}, {2,3}} 
 

 

 

 

 

 

 



Optimization Problems For Independence Systems 
 

Many optimization problems are equivalent to a problem of finding a base of 
maximal weight or a circuity of minimal weight. 

MAXIMAL INDEPENDENT SET PROBLEM: find maximal independent set in a 
graph. 

For example, {1,2} - maximal independent set. 

It is easy to see that {1,2} - base of maximal weight (let all 
weights be equal to 1). 

This problem is NP-hard (in general). 
 

 

 

 

 

 

 



Graph Matroid 
 

Matroid is an independence system S = (U, A) if all bases of any W  U have an 
equal cardinality. 

B = {{1,2}, {1,4}, {2,3}, {3,4}} 

C = {{1,3}, {2,4}} 

{1,2} and {1,4} are bases of maximal weights.  

A graph independence system is a matroid if and only if the 
graph is a cluster graph. 
 

 

 

 

 

 

 



Maximal Weighted Independent Set 
 

We can find a base of maximal weight by a greedy algorithm in a matroid if an 
objective function is additive (Rado-Edmonds). 

In general, we can’t find optimal solution by a greedy 
algorithm, but we can use it for approximation algorithms. 
 

 

 

 

 

 

 

 

 

 

 



Maximal Weighted Independent Set 
 

 

 

 



Matroid and Rank Function 
 

M = (U, A) is a matroid. r: 2
U
 → ℤ+ is a rank function that for each X  U maps r(X) – 

cardinality of any base B  X. Here 

A = {A  U | r(A) = |A|} (1). 

Theorem.  

1) M = (U, A) is a matroid. Then a rank function r: 2
U
 → ℤ+ defined with  

r(X) = max{|B|: B  X, B  BX} (2). 

for each X, Y  U satisfies: 

(r1) r(X) ≤ |X|, 

(r2) X  Y  r(X) ≤ r(Y) (monotonic), 

(r3) r(X  Y) + r(X  Y) ≤ r(X) + r(Y) (submodular). 

2) r is a rank function (2) and it satisfies (r1)-(r3). Then A defines with (1) is an indexed 
family of independent subsets of a matroid. 



Rank Function For Graph Matroid 
 

 

Let's calculate rank for M = (V, A), where V = {1, 2, 3}. 

BV = {{1,2}, {1,3}} 

r( ) = 0; 

r({1}) = r({2}) = r({3}) = 1; 

r({1,2}) = 2;  

r({1,3}) = 1; 

r({2,3}) = 2; 
r({1,2,3}) = 2. 

 

 

 



Independence System and Rank Functions 
 

For an independence system S = (U, A) we define two functions. 

ru(X) = max{|B| : B  X, B  BX} - upper rank 

rl(X) = min{|B| : B  X, B  BX} - lower rank 

Theorem.  

Let S = (U, A) be an independence system. Then the following conditions are 
equivalent: 

1. S is a matroid; 

2. ru and rl are equals; 

3. ru is submodular. 

 

 



Independence System and Upper Rank Function 
 

 

If S = (U, A) is not a matroid then ru satisfies (r1)-(r2) and doesn’t satisfy (r3). 

ru( ) = 0; 

ru({1}) = ru({2}) = ru({3}) = 1; 

ru({1,2}) = 2;  

ru({1,3}) = 1; 

ru({2,3}) = 1; 

ru({1,2,3}) = 2. 

ru({1,3}) + ru({2,3}) < ru({1,2,3}) + ru({3}). 

 

 

 



Independence System and Upper Rank Function 
 

S = (U, A) is an independence system. ru: 2
U
 → ℤ+ is an upper rank function. Here 

A = {A  U | ru(A) = |A|} (1). 

Theorem.  

1) S = (U, A) is an independence system. Then an upper rank function ru: 2
U
 → ℤ+ defined with  

ru(X) = max{|B| : B  X, B  BX} (2). 

for each X, Y  U satisfies: 

(r1) ru(X) ≤ |X|, 

(r2) X  Y  ru(X) ≤ ru(Y), 

(r3) ru(X  Y) ≤ ru(X) + ru(Y). 

2) ru is an upper rank function (2) and it satisfies (r1)-(r3). Then A defines with (1) is an indexed 
family of independent subsets of an independence system. 
 



Comatroid 
 

Comatroid is an independence system S = (U, D) if all circuities of any W  U have 
an equal cardinality. 
 

Example. Let G = (V, E) be a graph. A subset I  V is a cover set of V if for each 
uv  E: u  V or v  V or u,v  V. A system S = (V, D) where D is a family of  all 
cover sets in G is an independence system. 

 

 

 

 

 

 

 

 



Graph Comatroid 
 

A graph independent system is a comatroid if and only if the graph is a cluster graph. 

С = {{1,3}, {1,4}, {2,3}, {2,4}} 

We can find a circuity of minimal weight by a reverse 
greedy algorithm in a comatroid if an objective function 
is additive (Rado-Edmonds). 

In general, we can’t find optimal solution by the reverse 
greedy algorithm, but we can use it for approximation 
algorithms. 
 

 

 

 

 

 



Graph Comatroid 
 

 

 

 



Comatroid and Girth Function 
 

CM = (U, A) is a comatroid. g: 2
U
 → ℤ+ is a girth function that for each X  U maps g(X) – 

cardinality of any circus X  C. Here 

D = {D  U | g(D) = |D|} (1). 

Theorem.  

1) CM = (U, D) is a comatroid. Then a girth function g: 2
U
 → ℤ+ defined with  

g(X) = min{|C| : X  C, C  CX} (2). 

for each X, Y  U satisfies: 

(g1) g(X) ≥ |X|, 

(g2) X  Y  g(X) ≤ g(Y) (monotonic), 

(g3) g(X  Y) + g(X  Y) ≥ g(X) + g(Y) (supermodular). 

2) g is a girth function (2) and it satisfies (g1)-(g3). Then D defines with (1) is an indexed 
family of dependent subsets of a comatroid. 



Plans 
 

1. Independence system by the grid function. 

2. Independence system by the interior operator. 

 


