Axiomatization of Independence Systems by Map Functions

A. Morshinin Sobolev Institute of Mathematics SB RAS Omsk-2023 The research was supported by RSF grant 22-71-10015

Independence System

U – nonempty finite set, $\mathbf{A} \subseteq 2^{U}$ – nonempty indexed family of subsets with an *independence axiom*

$$A_1 \in \mathbf{A}, A_2 \subseteq A_1 \Rightarrow A_2 \in \mathbf{A}.$$

A – independent subsets.

A set $\mathbf{D} = \mathbf{2}^{\mathbf{U}} \setminus \mathbf{A}$ is satisfied

$$D_1 \in \mathbf{D}, D_1 \subseteq D_2 \Rightarrow D_2 \in \mathbf{D}.$$

- **D** dependent subsets.
- \mathbf{B} *bases* or maximal independent subsets.
- C *circuities* or minimal dependent subsets.

 $S = (U, \mathbf{A}), S = (U, \mathbf{B}), S = (U, \mathbf{C}) \text{ and } S = (U, \mathbf{D}) \text{ are equals$ *independence systems*.

Independence System

For any subset $X \subseteq U$ let $\mathbf{B}_{\mathbf{X}}$ be a set of all maximal independent *subsets* of X (i.e. $\mathbf{B}_{\mathbf{X}}$ is *bases* of X).

For any subset $X \subseteq U$ let C_X be a set of all minimal dependent *supersets* of X (i.e. C_X is *circuities* of X).

Graph Independence System

Example. Let G = (V, E) be a graph. A subset $I \subseteq V$ is an *independent set* if $uv \notin E$ for any $u, v \in I$. A system S = (V, A) where A is a family of all independent subsets in G is an independence system.

$$\mathbf{A} = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\} \}$$
$$\mathbf{D} = \{ \{1,3\}, \{2,3\}, \{1,2,3\} \}$$
$$\mathbf{B} = \{ \{3\}, \{1,2\} \}$$
$$\mathbf{C} = \{ \{1,3\}, \{2,3\} \}$$

Optimization Problems For Independence Systems

Many optimization problems are equivalent to a problem of finding a *base of maximal weight* or a *circuity of minimal weight*.

MAXIMAL INDEPENDENT SET PROBLEM: find maximal independent set in a graph.

For example, $\{1,2\}$ - maximal independent set.

It is easy to see that $\{1,2\}$ - base of maximal weight (let all weights be equal to 1).

This problem is NP-hard (in general).

Graph Matroid

Matroid is an independence system $S = (U, \mathbf{A})$ if all bases of any $W \subseteq U$ have an equal cardinality.

Maximal Weighted Independent Set

We can find a base of maximal weight by a *greedy* algorithm in a matroid if an objective function is *additive* (Rado-Edmonds).

In general, we can't find optimal solution by a greedy $^{3(2)}$ $^{4(4)}$ algorithm, but we can use it for approximation algorithms. $^{1(3)}$

Maximal Weighted Independent Set

Matroid and Rank Function

 $M = (U, \mathbf{A})$ is a matroid. $\mathbf{r}: \mathbf{2}^{\mathbf{U}} \to \mathbb{Z}_+$ is a *rank function* that for each $X \in U$ maps $\mathbf{r}(X)$ – cardinality of any base $B \subseteq X$. Here

$$\mathbf{A} = \{ A \subseteq U \mid \mathbf{r}(A) = |A| \} (1).$$

Theorem.

1) $M = (U, \mathbf{A})$ is a matroid. Then a rank function $\mathbf{r}: \mathbf{2}^{U} \to \mathbb{Z}_{+}$ defined with

$$\mathbf{r}(X) = \max\{|B|: B \subseteq X, B \in \mathbf{B}_{\mathbf{X}}\} \ (2).$$

for each *X*, $Y \subseteq U$ satisfies:

 $(\mathbf{r}1) \mathbf{r}(X) \leq |X|,$

(r2) $X \subseteq Y \Rightarrow \mathbf{r}(X) \le \mathbf{r}(Y)$ (monotonic),

(r3) $\mathbf{r}(X \cup Y) + \mathbf{r}(X \cap Y) \le \mathbf{r}(X) + \mathbf{r}(Y)$ (submodular).

2) **r** is a rank function (2) and it satisfies (r1)-(r3). Then **A** defines with (1) is an indexed family of independent subsets of a matroid.

Rank Function For Graph Matroid

Let's calculate rank for M = (V, A), where $V = \{1, 2, 3\}$. $\mathbf{B}_{V} = \{\{1, 2\}, \{1, 3\}\}\}$ $\mathbf{r}(\underline{\emptyset}) = 0;$ $\mathbf{r}(\underline{\{1\}}) = \mathbf{r}(\underline{\{2\}}) = \mathbf{r}(\underline{\{3\}}) = 1;$ $\mathbf{r}(\underline{\{1, 2\}}) = 2;$ $\mathbf{r}(\{1, 3\}) = 1;$ $\mathbf{r}(\underline{\{2, 3\}}) = 2;$ $\mathbf{r}(\{1, 2, 3\}) = 2.$

2 •

Independence System and Rank Functions

For an independence system $S = (U, \mathbf{A})$ we define two functions.

$$\mathbf{r}_{\mathbf{u}}(X) = \max\{|B| : B \subseteq X, B \in \mathbf{B}_{\mathbf{X}}\}\$$
 - upper rank
 $\mathbf{r}_{\mathbf{l}}(X) = \min\{|B| : B \subseteq X, B \in \mathbf{B}_{\mathbf{X}}\}\$ - lower rank

Theorem.

Let S = (U, A) be an independence system. Then the following conditions are equivalent:

- 1. *S* is a matroid;
- 2. $\mathbf{r}_{\mathbf{u}}$ and $\mathbf{r}_{\mathbf{l}}$ are equals;
- 3. $\mathbf{r}_{\mathbf{u}}$ is submodular.

Independence System and Upper Rank Function

If $S = (U, \mathbf{A})$ is not a matroid then $\mathbf{r}_{\mathbf{u}}$ satisfies (r1)-(r2) and doesn't satisfy (r3). $\mathbf{r}_{\mathbf{u}}(\underline{\emptyset}) = 0;$ $\mathbf{r}_{\mathbf{u}}(\underline{\{1,2\}}) = \mathbf{r}_{\mathbf{u}}(\underline{\{2\}}) = \mathbf{r}_{\mathbf{u}}(\underline{\{3\}}) = 1;$ $\mathbf{r}_{\mathbf{u}}(\underline{\{1,3\}}) = 1;$ $\mathbf{r}_{\mathbf{u}}(\underline{\{2,3\}}) = 1;$ $\mathbf{r}_{\mathbf{u}}(\underline{\{1,2,3\}}) = 2.$ $\mathbf{r}_{\mathbf{u}}(\underline{\{1,2,3\}}) = 2.$ $\mathbf{r}_{\mathbf{u}}(\underline{\{1,3\}}) + \mathbf{r}_{\mathbf{u}}(\underline{\{2,3\}}) < \mathbf{r}_{\mathbf{u}}(\underline{\{1,2,3\}}) + \mathbf{r}_{\mathbf{u}}(\underline{\{3\}}).$

Independence System and Upper Rank Function

 $S = (U, \mathbf{A})$ is an independence system. $\mathbf{r}_{\mathbf{u}}: \mathbf{2}^{\mathbf{U}} \to \mathbb{Z}_{+}$ is an *upper rank function*. Here

$$\mathbf{A} = \{ A \subseteq U \mid \mathbf{r}_{\mathbf{u}}(A) = |A| \} \ (1)$$

Theorem.

1) $S = (U, \mathbf{A})$ is an independence system. Then an upper rank function $\mathbf{r}_{\mathbf{u}}: \mathbf{2}^{\mathbf{U}} \to \mathbb{Z}_{+}$ defined with $(X) = \max\{|B| : B \subseteq X, B \in \mathbf{B}_{\mathbf{x}}\} (2).$

$$\mathbf{r}_{\mathbf{u}}(X) = \max\{|B| : B \subseteq X, B \in \mathbf{B}_{\mathbf{X}}\}\$$

for each *X*, $Y \subseteq U$ satisfies:

(r1) $\mathbf{r}_{\mathbf{u}}(X) \leq |X|$,

(r2) $X \subseteq Y \Rightarrow \mathbf{r}_{\mathbf{u}}(X) \leq \mathbf{r}_{\mathbf{u}}(Y)$,

(r3) $\mathbf{r}_{\mathbf{u}}(X \cup Y) \leq \mathbf{r}_{\mathbf{u}}(X) + \mathbf{r}_{\mathbf{u}}(Y).$

2) \mathbf{r}_{μ} is an upper rank function (2) and it satisfies (r1)-(r3). Then A defines with (1) is an indexed family of independent subsets of an independence system.

Comatroid

Comatroid is an independence system $S = (U, \mathbf{D})$ if all circuities of any $W \subseteq U$ have an equal cardinality.

Example. Let G = (V, E) be a graph. A subset $I \subseteq V$ is a *cover set* of V if for each $uv \in E$: $u \in V$ or $v \in V$ or $u, v \in V$. A system $S = (V, \mathbf{D})$ where \mathbf{D} is a family of all cover sets in G is an independence system.

Graph Comatroid

A graph independent system is a comatroid if and only if the graph is a cluster graph.

 $\mathbf{C} = \{\{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}\}$

We can find a circuity of minimal weight by a *reverse greedy* algorithm in a comatroid if an objective function is *additive* (Rado-Edmonds).

In general, we can't find optimal solution by the reverse greedy algorithm, but we can use it for approximation ³(3) • • • • • • (1) algorithms.

5 (3)

- 2 (5)

1 (2)

Graph Comatroid

Comatroid and Girth Function

 $CM = (U, \mathbf{A})$ is a comatroid. $\mathbf{g}: \mathbf{2}^{\mathbf{U}} \to \mathbb{Z}_+$ is a *girth function* that for each $X \in U$ maps $\mathbf{g}(X)$ – cardinality of any circus $X \subseteq C$. Here

$$\mathbf{D} = \{ D \subseteq U \mid \mathbf{g}(D) = |D| \} (1).$$

Theorem.

1) $CM = (U, \mathbf{D})$ is a comatroid. Then a girth function $\mathbf{g}: 2^U \to \mathbb{Z}_+$ defined with $\mathbf{g}(X) = \min\{|C| : X \subseteq C, C \in \mathbf{C}_X\}$ (2).

for each *X*, $Y \subseteq U$ satisfies:

 $(g1) \mathbf{g}(X) \ge |X|,$

(g2) $X \subseteq Y \Rightarrow \mathbf{g}(X) \leq \mathbf{g}(Y)$ (monotonic),

(g3) $\mathbf{g}(X \cup Y) + \mathbf{g}(X \cap Y) \ge \mathbf{g}(X) + \mathbf{g}(Y)$ (supermodular).

2) **g** is a girth function (2) and it satisfies (g1)-(g3). Then **D** defines with (1) is an indexed family of dependent subsets of a comatroid.

Plans

- 1. Independence system by the grid function.
- 2. Independence system by the interior operator.