О решении робастной задачи

 балансировки линии с параллельными операциями и интервальными длительностями обработки(материалы для доклада на XIV International Conference Optimization and Applications (OPTIMA-2023))

Борисовский П.А.
Институт математики им. С.Л. Соболева СО РАН

Исследование выполнено за счет гранта Российского научного фонда № 22-71-10015, https://rscf.ru/project/22-71-10015.

Problem formulation

Transfer line structure

- A set of tasks is given. Each task must be performed once.
- Tasks are grouped into blocks for a parallel execution. The block time is the maximal execution time of its tasks.
- Each machine can execute a sequence of blocks. A workload time of a machine is the sum of its blocks' times and it is limited by a given cycle time \boldsymbol{T}.
- A partial order on the tasks is given that defines precedence relations.

Literature Review

Deterministic problem

1. Dolgui, A., Guschinsky, N., Levin, G.: On problem of optimal design of transfer lines with parallel and sequential operations. In: 7th IEEE International Conference on ETFA-1999, vol. 1, pp. 329-334.
Problem formulation, motivation, graph solution approach.
2. Guschinskaya, O., Gurevsky E., Dolgui, A., Eremeev, A.: Metaheuristic approaches for the design of machining lines. Int. J. Adv. Manuf. Technol 55(1-4), 11-22 (2011)
GRASP, Genetic algorithm, test instances.

Robust problem formulation

$V=\{1,2, \ldots, n\}$ is the set of all tasks;
$\boldsymbol{t}=\left(\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{n}\right)$ is the vector of execution times;
$\widetilde{\boldsymbol{V}} \subseteq \boldsymbol{V}$ is the set of uncertain tasks, for which the execution times may deviate from their nominal values;

Robust problem formulation

For some solution \boldsymbol{S}, a stability radius is the deviation supported by the solution which keeps its feasibility.

$$
\begin{gathered}
\rho(S, t)=\max \{\varepsilon \mid \forall \xi \in B(\varepsilon) \text { solution } S \text { stays feasible if } \\
t \text { is replaced by } t+\xi\} .
\end{gathered}
$$

where

$$
\boldsymbol{B}(\varepsilon)=\left\{\boldsymbol{\xi} \in \boldsymbol{R}^{n} \mid \boldsymbol{\xi}_{j}>\mathbf{0} \text { for uncertain tasks } \boldsymbol{j}, \text { and }\|\boldsymbol{\xi}\| \leq \varepsilon\right\}
$$

In this work, \boldsymbol{l}_{1}-norm is used: $\|\boldsymbol{\xi}\|_{1}=\sum_{j} \boldsymbol{\xi}_{j}$.

Robust problem formulation

For some solution \boldsymbol{S}, a stability radius is the deviation supported by the solution which keeps its feasibility.

$$
\begin{gathered}
\rho(S, t)=\max \{\varepsilon \mid \forall \xi \in B(\varepsilon) \text { solution } S \text { stays feasible if } \\
t \text { is replaced by } t+\xi\} .
\end{gathered}
$$

where

$$
B(\varepsilon)=\left\{\xi \in R^{n} \mid \xi_{j}>0 \text { for uncertain tasks } j, \text { and }\|\xi\| \leq \varepsilon\right\}
$$

In this work, \boldsymbol{l}_{1}-norm is used: $\|\boldsymbol{\xi}\|_{1}=\sum_{j} \boldsymbol{\xi}_{j}$.

Literature Review

1. Pirogov A., Gurevsky E., Rossi A., Dolgui A.: Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions. Eur. J. Oper. Res 290(3), 946-955 (2021)
Robust problem formulation, calculation of stability radius, MIP, test instances, greedy algorithm.
2. Borisovsky P., Battaïa O.: MIP-Based Heuristics for a Robust Transfer Lines Balancing Problem. In: OPTIMA 2021, LNCS, vol. 13078, pp. 123-135.

Inclusion/exclusion constraints, MIP based matheuristic.

Calculation of stability radius

For any uncertain block \boldsymbol{k} of machine \boldsymbol{p} define a save time as the difference between the block working time $\boldsymbol{\tau}_{k}$ and the nominal processing time of its longest uncertain task, i.e.,

$$
\Delta:=\tau-\max _{j \in \tilde{V}} t_{j}
$$

Calculation of stability radius, [1]

$$
\rho=T-\sum \tau_{k}+\Delta_{\min }
$$

i.e, take the block with the minimal $\boldsymbol{\Delta}$ and extend its longest time until the total workload reaches \boldsymbol{T}.

For a line with many machines $\rho=\min \rho_{i}$.

1. Pirogov A., Gurevsky E., Rossi A., Dolgui A.: Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions. EJOR 290(3), 946-955 (2021)

New formulation: interval processing times

In the previous formulation, no upper limit on the possible extra times was assumed.

This may lead to improbable situations, where only one task has a large excess: $\boldsymbol{\xi}=(\mathbf{0}, . ., \boldsymbol{\rho}, . . \mathbf{0})$

In this study, assume that $\boldsymbol{\xi}_{j} \leq \boldsymbol{L}$, i.e. the actual time is in $\left[\boldsymbol{t}_{\boldsymbol{j}}, \boldsymbol{t}_{\boldsymbol{j}}+\boldsymbol{L}\right]$.

Computing the stability radius

A special case: if \boldsymbol{T} is large enough.

New formulation

A special case: if \boldsymbol{T} is large enough then the solution is always feasible and $\rho=\boldsymbol{L} \tilde{n}$.

Computing the stability radius

Computing the stability radius for one workstation

1. Sort blocks by increase of their save times
2. Let $\boldsymbol{\rho}:=\mathbf{0}, \boldsymbol{R}:=\boldsymbol{T}-\sum_{k=1}^{K} \boldsymbol{\tau}_{k}$.
3. For $\boldsymbol{k}=1$ to \boldsymbol{K} do:
2.1. Let $\boldsymbol{a}_{\boldsymbol{k}}:=\boldsymbol{L}-\boldsymbol{\Delta}_{\boldsymbol{k}}$.
2.2. If $\boldsymbol{a}_{\boldsymbol{k}}<\mathbf{0}$ then stop and return $\boldsymbol{L} \tilde{\boldsymbol{n}}$.
2.3. If $\boldsymbol{R}<\boldsymbol{a}_{\boldsymbol{k}}$ then
set $a_{k}:=\boldsymbol{R}, \quad \rho:=\rho+\Delta_{k}+a_{k}$, stop and return ρ.
Else

$$
R:=R-a_{k}, \rho:=\rho+\Delta_{k}+a_{k}
$$

4. Return $\boldsymbol{L} \tilde{\boldsymbol{n}}$.

Theorem. The algorithm correctly finds the stability raduis.

Random Iterated Local Search

On each iteration:

1. Many times in parallel apply small random changes (mutation)
2. Select the best output and make it the new currect solution
3. On certain iterations, a shaking procedure is applied, which consists in several mutations in a sequence.

Hybrid "Go with the Winners" algorithm

Random iterated local search

sorting

Random iterated local search

Mutations and evaluation of obtained solutions are done in parallel on a Graphics Processing Unit (GPU)

Aldous, D., Vazirani, U.: "Go with the winners" algorithms. In: Proc. 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, pp 492-501. IEEE (1994).
Borisovsky, P.: A parallel "Go with the winners" algorithm for some scheduling problems. Journal of Applied and Industrial Mathematics (in press)

Computational Experiments

GPU Tesla V100 ($1530 \mathrm{MHz}, 5120$ CUDA cores)
Test instances from (Pirogov et al., 2021).

Series S1 \boldsymbol{n} $\mathbf{2 5}, \boldsymbol{m}=\mathbf{5}$	optimize unlimited		optimize	
	$\boldsymbol{\rho}_{U}^{\text {best }}$	$\boldsymbol{\rho}_{L}^{\text {avg }}$	$\boldsymbol{\rho}_{U}^{\text {avg }}$	$\boldsymbol{\rho}_{L}^{\text {best }}$
S1.0	30.4	30.4	20.59	260
S1.1	27.3	27.3	16.52	38.6
S1.2	29.0	29.0	21.9	30.5
S1.3	34.5	34.5	20.99	260
S1.4	28.5	28.5	14.26	36.7
S1.5	32.3	32.3	21.54	260
S1.6	28.5	28.5	20.17	35.4
S1.7	38.5	38.5	20.62	260
S1.8	32.4	32.4	21.7	260
S1.9	24.4	24.4	23.87	24.4

In the unlimited case. Metaheuristic: 10 times by 1 second Gurobi: 10 minutes running time limit.

Conclusions

- A new robust transfer line balancing problem with limited exctra processing times is considered.
- A calculation of the stability radius is provided and validated.
- A parallel metaheuristic for maximization of the stability radius is developed.
- It would be worthwhile to extend this approach to the case, where uncertain tasks have different time limits.

Thank you for your attention!

