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Àííîòàöèÿ
Elliptic equation with parabolic boundary layers along a half-strip

is considered. Method of lines, taking into account boundary layers,
is used to transform a problem to a system of ordinary di�erential
equations on half-in�nite interval. Method of extraction of a set of
solutions, satisfying the limit conditions at the in�nity, is used to
transform a problem to a �nite interval. Asymptotic series are used
to solve auxiliary Couchy problems with conditions at an in�nity.

1 Introduction
We consider a singular perturbed elliptic equation on a half-strip. Solution of
a problem has boundary layers along a strip. If we shall construct a di�erence
scheme for this problem, we'll have a scheme with an in�nite number of mesh
points, that is bad for computer calculations. The purpose of the article is
to transform a problem to a problem for bounded domain.

Introduce some designations. Let C and Ci be constants, undepending on
parameter ε and mesh steps. For bounded functions p(x), q(x, y)
||p|| = max

x
|p(x)|, ||q|| = max

x,y
|q(x, y)|.

Let us formulate the problem under consideration. We consider the Dirichlet
problem for the following singularly perturbed elliptic equation:

ε
∂2u

∂x2
+ ε

∂2u

∂y2
− a(x, y)

∂u

∂x
− b(x, y)u = f(x, y), (1)
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u(x, y) = φi, (x, y) ∈ li i = 1, 2, 3, lim
x→∞

u(x, y) = 0 (2)

for half-in�nite strip D = {0 ≤ x < ∞, 0 ≤ y ≤ 1}, where l1, l2, l3 - linear
parts of the boundary:

l1 = {y = 0, 0 ≤ x < ∞}, l2 = {x = 0, 0 ≤ y ≤ 1}, l3 = {y = 1, 0 ≤ x < ∞}.

Functions a, b, f, φi are su�ciently smooth on D,

ε > 0, a(x, y) ≥ α > 0, b(x, y) ≥ β > 0, (3)

lim
x→∞

φi(x) = 0, i = 1, 3, lim
x→∞

f(x, y) = 0,

lim
x→∞

a(x, y) = a0(y), lim
x→∞

b(x, y) = b0(y), (4)

a0(y), b0(y) are continuous functions.
Get some astimates on solution u(x, y) and its derivatives. Using maximum

principle, we get estimate:

||u|| ≤ ||f ||/β + max
i
||φi||. (5)

We use known estimates of derivatives, for example, from [5]:
∣∣∣∣
∂u

∂x

∣∣∣∣ ,

∣∣∣∣
∂2u

∂x2

∣∣∣∣ ≤ C1, (6)

∣∣∣∣
∂j

∂yj
u(x, y)

∣∣∣∣ ≤ C2

[
1 + ε−j/2

(
exp{−(m/ε)1/2y}+ exp{(m/ε)1/2(y − 1)})] ,

β/2 < m < β, j = 1, 2, 3, 4. (7)

According to (7), the solution of the problem (1)-(2) has the boundary layers
along a half-strip.

2 Method of lines
Introduce nonuniform mesh in variable y :

Ωy = {yj, j = 0, 1, ..., N, hj = yj − yj−1}.
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We approximate equation (1) in variable y and get a system of di�erential -
di�erence equations:

LjV(x) = ε
d2Vj

dx2
+ εΛyy,jV− a(x, yj)

dVj

dx
− b(x, yj)Vj = f(x, yj), 0 < j < N,

Vj(0) = φ2(yj), lim
x→∞

Vj(x) = 0, V0(x) = φ1(x), VN(x) = φ3(x), (8)

where V(x) = (V0(x), V1(x), . . . , VN(x)),

Λyy,jV =
hj(Vj+1 − Vj)− hj+1(Vj − Vj−1)

hjhj+1(hj + hj+1)/2
.

We take into account boundary layers along a strip and use Bakhvalov mesh
in the variable y [1]:

yj = λ(tj), tj = j/N, j = 0, 1, ..., N. (9)

De�ne U = [u]Ωy .
Lemma 1. For some constant C

max
i

max
x
|Ui(x)− Vi(x)| ≤ C

N2
. (10)

Proof. De�ne Z = V −U. Then

LjZ(x) = ε
∂2u

∂y2
(x, yj)− εΛyy,j[u]Ωy , j = 1, ..., N − 1,

Z(0) = 0, lim
x→∞

Z(x) = 0, z0(x) = 0, zN(x) = 0. (11)

Using estimates of derivatives (7), as in the case of ordinary di�erential
equation in [1], on Bakhvalov mesh Ωy we get

max
j

max
x
|LjZ(x)| ≤ C

N2
.

Applying maximum principle, we get estimate (10). Lemma is proved.
We can use other nonuniform mesh in variable y. If we'll use more compact

Shishkin's mesh [2], we'll have instead of (10) next estimate:

max
i

max
x
|Ui(x)− Vi(x)| ≤ C

N2
ln2 N. (12)
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3 Transfer of the boundary condition from in�nity
Consider a system of equations in matrix form:

TεV(x) = εV′′(x)− a(x)V′(x)−M(x)V(x) = F(x), (13)

V(0) = A, lim
x→∞

V(x) = 0, (14)

where a(x) ≥ α > 0, M(x) is positive de�nite matrix of order K. If we used
method of lines, then K = N − 1. Vector-function F(x) → 0, x →∞,

(M(x)y,y) ≥ β(y,y). (15)

Get estimate of stability for problem (13)-(14).
Lemma 2. Next estimate has a place:

||V(x)||2 ≤ ||A||2 +
1

β2
max

x
||F(x)||2, ||U||2 =

K∑
i=1

U2
i . (16)

Proof. Let w(x) = ||V(x)||2. Multiply equation (13) on V(x) and get:

ε

2
w′′(x)− a(x)

2
w′(x)− βw(x) = (MV,V)− β(V,V) + ε(V′,V′) + (F,V).

We use known inequality

|2(F,V)| ≤ σ||F||2 +
1

σ
||V||2, σ > 0.

Taking σ = 1/β, we get

Lw(x) = εw′′(x)− a(x)w′(x)− βw(x) ≥ − 1

β
||F||2. (17)

De�ne
Ψ(x) =

1

β2
max

x
||F(x)||2 + ||A||2 − w(x).

Using estimate (17), we get:

LΨ(x) ≤ 0, x > 0, Ψ(0) ≥ 0, lim
x→∞

Ψ(x) ≥ 0.

>From maximum principle follows Ψ(x) ≥ 0, x ≥ 0. Lemma is proved.
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Transform a problem (13)-(14) to a problem for a �nite interval. We use
approach, developed in works of Abramov A.A., Balla K., Konyukhova N.B.,
for example [3]. For equations with a small parameter we used that approach,
for example, in [4]. De�ne a set of solutions of a system (13), satisfying the
limit condition at in�nity (14):

V′(x) = γ(x)V(x) + θ(x), (18)

where γ(x) is solution of matrix Riccati di�erential equation

εγ′ + εγ2 − a(x)γ −M(x) = 0, γ(x) → γ∞, x →∞, (19)

θ(x) is solution of linear problem:

εθ′ − [a(x)I− εγ(x)]θ = F(x), θ(x) → 0, x →∞, (20)

where γ∞ is solution of quadratic matrix equation

εγ2 − a∞γ −M∞ = 0, γ∞ = −2M∞
[
a∞I +

√
a2∞I + 4M∞ε

]−1

. (21)

According to known results, problems (19),(20) have unique solution for x >
0. Using (18), transform problem (13)-(14) to a �nite interval:

εV′′ − a(x)V′ −M(x)V = F(x),

V(0) = A, V′(S) + gV(S) = θ(S), g = −γ(S). (22)

where (gy,y) ≥ δ(y,y), δ > 0, y ∈ RK .
Problems (13)-(14) and (22) have a same solution on interval [0, S]. To

prove it, consider an initial value problem:

V′(x)− γ(x)V(x) = θ(x), V(0) = A. (23)

We take into account, that problems (13)-(14) and (22) have unique solution.
On other hand, solution of problem (23) satis�es to problems (13)-(14) and
(22). So, (13)-(14) and (22) have a same solution.

Coe�cients γ(S), θ(S) from problems (19),(20) can be found only approximately.
We need to get estimate of stability for problem (22) to errors in γ(S) and
θ(S).
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Lemma 3. Let Ṽ(x) is solution of problem (22) with coe�cients γ̃(S)
and θ̃(S). Let matrix norm is in agreement with vector norm,

||θ(S)− θ̃(S)|| ≤ ∆, ||g − g̃|| ≤ ∆, (g̃y,y) ≥ δ̃(y,y), δ̃ > 0, y ∈ RK .

Then for some constant C

||V(x)− Ṽ(x)|| ≤ C∆
√

ε exp(αε−1(x− S)/2). (24)

Proof. Let Z(x) = V(x)− Ṽ(x). Then

TεZ(x) = 0, Z(0) = 0, Z′(S) + g̃Z(S) = θ(S)− θ̃(S) + (g̃− g)V(S). (25)

We multiply (25) on Z(x), introduce w(x) = ||Z(x)||2 and get

w(0) = 0, Lw = εw′′ − aw′ − βw ≥ 0, Rw = w′(S) + θ̃(S)w(S) ≤ C0∆
2.

Let
Ψ(x) = Cε∆2 exp(αε−1(x− S))− w(x).

For some constant C

Ψ(0) ≥ 0, LΨ(x) ≤ 0, 0 < x < S, RΨ(x) ≥ 0.

It follows from maximum principle, that Ψ(x) ≥ 0. Lemma is proved.
We �nd coe�tients γ(S), θ(S) from problems (19),(20) in a form:

γm(x) =
m∑

k=0

γkε
k, θm(x) =

m∑

k=0

θkε
k.

Using this series in (19),(20), we get reccurent formulas on γk, θk.
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