A method of lines for elliptic problem with a
boundary layers along a strip*
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Elliptic equation with parabolic boundary layers along a half-strip
is considered. Method of lines, taking into account boundary layers,
is used to transform a problem to a system of ordinary differential
equations on half-infinite interval. Method of extraction of a set of
solutions, satisfying the limit conditions at the infinity, is used to
transform a problem to a finite interval. Asymptotic series are used
to solve auxiliary Couchy problems with conditions at an infinity.

1 Introduction

We consider a singular perturbed elliptic equation on a half-strip. Solution of
a problem has boundary layers along a strip. If we shall construct a difference
scheme for this problem, we’ll have a scheme with an infinite number of mesh
points, that is bad for computer calculations. The purpose of the article is
to transform a problem to a problem for bounded domain.

Introduce some designations. Let C' and C; be constants, undepending on
parameter ¢ and mesh steps. For bounded functions p(z), q(z,y)
Ipll = max [p(z)], [lgl| = max|q(z,y)].

Let us formulate the problem under consideration. We consider the Dirichlet
problem for the following singularly perturbed elliptic equation:
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u(z,y) = ¢, (v,y) €l;i=1,2,3, lim u(x,y) =0 (2)

for half-infinite strip D ={0 <z < o0, 0 <y <1}, where ly,[s,[3 - linear
parts of the boundary:

Lh={y=0,0<zx<o0},lb={r=0,0<y<1} 3={y=1,0<z < oo}

Functions a, b, f, ¢; are sufficiently smooth on D,

e>0, a(z,y) 2 a>0, b(z,y) = >0, (3)
xh_)Ing(l([E,y) = aO(y)7 1‘11—{20 b('T?y) = b0<y>7 (4>

ao(y), bo(y) are continuous functions.
Get some astimates on solution u(z, y) and its derivatives. Using maximum
principle, we get estimate:

[lul] < AIFU/B + max|[e]]. (5)
We use known estimates of derivatives, for example, from [5]:
ou 0%u
— 1Z=l<
ax Y 8I2 —_ ClJ (6>
Y .
'a—ij(x, y)‘ < Gy 14772 (exp{—(m/e)"?y} + exp{(m/e)*(y = D})],
B/2<m<B, j=1,234. (7)

According to (7), the solution of the problem (1)-(2) has the boundary layers
along a half-strip.

2 Method of lines

Introduce nonuniform mesh in variable y :

Qy = {yj,j =0,1,..., N, hj =Y — yj—l}‘



We approximate equation (1) in variable y and get a system of differential -
difference equations:

2

d°V; dV; .
LiV(z)=c¢ dx; +eAy,;V — a(:v,yj)d—; —b(z,y;)V; = f(x,y;), 0<j <N,

Vi(0) = dalu), lim Vi(@) = 0, Vi(a) = 6u(a), V() = dala), (9
where V(z) = (Vo(x), Vi(x),. .., VN(x)),

v = Vi = V5) = hja(V; = Vi)

A .
v hihjii(hy + hj1)/2

We take into account boundary layers along a strip and use Bakhvalov mesh
in the variable y [1]:

yj:)\<tj), tj:j/N, j:O,l,,N (9)

Define U = [u]q, .
Lemma 1. For some constant C

C
max max \Ui(z) — Vi(z)| < Nz (10)
Proof. Define Z =V — U. Then
0*u .
LZ(z) = gﬁ_yQ(x’yj) —elAyyilulo,, j=1,..,N—1,

Z(0) =0, xhj& Z(z) =0, z(z)=0, zy(z) =0. (11)

Using estimates of derivatives (7), as in the case of ordinary differential
equation in |1], on Bakhvalov mesh €2, we get

C
m]axmgx|LjZ(m)| < Nz
Applying maximum principle, we get estimate (10). Lemma is proved.
We can use other nonuniform mesh in variable y. If we’ll use more compact
Shishkin’s mesh [2], we’ll have instead of (10) next estimate:

mlaxmgx\Ui(x) —Vi(x)] < %an N. (12)



3 Transfer of the boundary condition from infinity

Consider a system of equations in matrix form:

T.V(z) =eV"(z) — a(z)V'(z) — M(z)V(z) = F(z), (13)
V(0) = A, xlggo V(z) =0, (14)

where a(x) > a > 0, M(z) is positive definite matrix of order K. If we used
method of lines, then K = N — 1. Vector-function F(z) — 0, x — oo,

(M(z)y,y) > B(y,y). (15)

Get estimate of stability for problem (13)-(14).
Lemma 2. Next estimate has a place:

V()" < [|A[]* + QmaXHF( D), (U] = ZUZ (16)

g
Proof. Let w(x) = ||V(z)||*>. Multiply equation (13) on V(z) and get:

gw”(:c) . %‘”)w'(;ﬁ) ~ Buw(z) = (MV, V) — B(V, V) +(V', V') + (F, V).

We use known inequality
2(F, V)| < ol[FIP + L[IVI?, o> 0.
Taking 0 = 1/3, we get
Lufa) = 0’ (o) - ala)u'(0) - fule) = ~[FIF. (17

Define

U(z) = —; max ||[F(x)|[* + [|A[]* — w(z).

ﬁ
Using estimate (17), we get:

LU(z) <0, >0, W(0)>0, lim U(zx)> 0.

Tr—00

>From maximum principle follows ¥(x) > 0,2 > 0. Lemma is proved.
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Transform a problem (13)-(14) to a problem for a finite interval. We use
approach, developed in works of Abramov A.A., Balla K., Konyukhova N.B.,
for example [3|. For equations with a small parameter we used that approach,
for example, in [4]. Define a set of solutions of a system (13), satisfying the
limit condition at infinity (14):

V(@) = v(2)V () + 0(x), (18)
where y(x) is solution of matrix Riccati differential equation
ey +ev’ —a(x)y = M(z) =0, 7(z) = Y, T = 00, (19)
6(x) is solution of linear problem:
g0’ — [a(x)I — ey(x)]0 = F(z), 6(z) — 0, z — oo, (20)

where 74, is solution of quadratic matrix equation

-1
eV — ooy — Moo =0, Yoo = —2M [aooI + Va2 I+ 41\/1005} . (21)

According to known results, problems (19),(20) have unique solution for x >
0. Using (18), transform problem (13)-(14) to a finite interval:

eV" —a(z)V' — M(z)V = F(x),

V(0) = A, V'(S)+gV(5) =0(5), g=-(9). (22)

where (gy.y) > d(y,y), 6 >0, y € R¥.
Problems (13)-(14) and (22) have a same solution on interval [0, S]. To
prove it, consider an initial value problem:

V'(z) —~(z)V(z) =6(z), V(0)=A. (23)

We take into account, that problems (13)-(14) and (22) have unique solution.
On other hand, solution of problem (23) satisfies to problems (13)-(14) and
(22). So, (13)-(14) and (22) have a same solution.
Coefficients v(.5), 6(.S) from problems (19),(20) can be found only approximately.
We need to get estimate of stability for problem (22) to errors in v(S5) and
6(S).



Lemma 3. Let V(x) is solution of problem (22) with coefficients 7(S)
and 0(S). Let matriz norm is in agreement with vector norm,

16(5) = 0(S)| < A, |lg—&ll <A, (By,y) > (y,y), 6 >0, y € R¥.
Then for some constant C'

(2)|l < CAVEexp(as™ (z — 5)/2). (24)
(z) — V(x). Then
Z'(S) +§Z(S) = 6(5) — 0(S) + (&~ g)V(S). (25)

We multiply (25) on Z(z), introduce w(z) = ||Z(z)||* and get

V() -V
Proof. Let Z(z) =V
T.7(z) =0, Z(0) =0,

w(0) =0, Lw = ew” —aw' — fw >0, Rw = w'(S) + 6(S)w(S) < CoA%

Let
U(x) = CeA?exp(ac ™ (z — 5)) — w(x).

For some constant C
U(0)>0, LY(z) <0, 0<z<S, R¥(x)>D0.

It follows from maximum principle, that ¥(z) > 0. Lemma is proved.
We find coeffitients v(5),0(S) from problems (19),(20) in a form:

" (x) = Z re®, 0™ (x) = Z 0.
k=0 k=0

Using this series in (19),(20), we get reccurent formulas on -y, 6.

Crmcok aurepaTyphl

[1] N.S. Bakhvalov. On the Optimization of Methods for Boundary-Value
Problems with Boundary Layers.// J. Vychislit. Mathematiki i Math.
Phys., v. 9, N 4, 1969, p. 841-89.

[2] Miller J.J.H., O’Riordan E., Shishkin G.I. Fitted numerical methods
for singular perturbation problems. Error estimates in the maximum
norm for linear problems in one and two dimensions. World Scientific,
Singapore, 1996.



13l

4]

[5]

Abramov A.A., Konyukhova N.B. Transfer of admissible boundary
conditions from a singular point of linear ordinary differential
equations.// Sov. J. Numer. Anal. Math. Modelling, v. 1, N 4, 1986,
pp. 245-265.

Zadorin A.I. Reduction from a semi-infinite interval to a finite interval of a
nonlinear boundary value problem for a system of second-order equations
with a small parameter. // Siberian Mathematical Journal, v. 42, N 5,
2001, pp. 884-892.

Zadorin A.I. Numerical solution of an elliptic equation with boundary
layers on a half-strip. // Vychislitel’'nye Technologii, v. 4, N 1, 1999, pp.
33-47.



