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Àííîòàöèÿ
An nonlinear second order ordinary singularly perturbed equation

is consided.We suppose that the solution has boundary layers near
the endpoints of the interval. We use the linear interpolation for the
source in the equation for the every mesh interval. The concordance
of the solutions in the neighbouring mesh intervals leeds to the �nite-
di�erence scheme. We prove that under some conditions this scheme
has the second order of the accuracy uniformly in a small parameter.

We shall consider the following singularly perturbed boundary value problem:

Lu = εu′′ − f(x.u) = 0, u(0) = A, u(1) = B (1)

with the hypotheses, which will be assumed throughout the paper :

ε > 0, f ∈ C2(I, R), I = [0, 1], f ′u ≥ β > 0. (2)

The solution u(x) has two boundary layers near the endpoints of the interval
I.

In the linear case of problem (1) the question of construction of a di�erence
scheme with the property of uniform convergence in a small parameter ε
at �rst was considered by Bahvalov N.S [1]. In that paper was proved the
uniform convergevce of the central di�erence scheme on the mesh with the
points concentrated in the boundary layers. This approach, based on the
concentration of mesh points in the regions where the solution changes rapidly,
was developed by Liseikin V.D., Petrenko B.E.[2]. In [3] the numerical soluton
of nonlinear problem (1) was found by using Richardson extrapolation on a
special nonuniform discretizaton mesh.In [4] after some transformation the
problem (1) was solved by a standard di�erence scheme on the equidistant
mesh in the combination with the solution of the corresponding reduced
problem.
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Another approach for construction of the schemes with the property of
uniform convergence in a small parameter ε - to take into account boundary-
layer behavior of the solution in the coe�cients of the di�erence scheme.
An exact di�erence scheme was founded by Samarsky A.A. [5]. Familiar
approach was presented by Gaevoy V.P.[6] . In the linear case the special
di�erence scheme was constructed in [7], [8] and in some other papes [9].

In this paper for nonlinear problem (1) we'll construct the scheme of the
second order accuracy uniformly in ε . Our method corresponds to the second
from the mentioned approaches. Throughout the paper C and Ci denote
positive constants independing of ε and mesh steps. We use the maximum
norm ‖V ‖ = max |Vi| for any vector V = (V1, V2, ..., VN) and

‖V ‖ = max |V (x)|, x ∈ I for any function V (x) .
We introduce the mesh Ω :

Ω = {xi : xi = xi−1 + hi, x0 = 0, xN = 1}, ∆i = [xi, xi+1).

To construct the di�erence scheme for the problem (1) we consider the
problem:

L̃V = εV ′′ − f̃(x, V ) = 0, V (0) = A, V (1) = B, (3)

where for x ∈ ∆n

f̃(x, V ) = fn + f ′xn(x− xn) + f ′V n(V − Vn)

with

fn = f(xn, Vn), f ′xn = f ′x(xn, Vn), f ′V n = f ′V (xn, Vn), Vn = V (xn).

For every interval ∆n the solution of the problem (3) has a form :

Vn(x) = V 0
n (x) + γ

(n)
1 exp[αn(x− xn)] + γ

(n)
2 exp[−αn(x− xn)], (4)

where V 0
n - some solution of the equation (3) :

V 0
n (x) = −β−2

n (bnx + dn) + β−2
n (bnxn + dn) cosh[αn(x− xn)]+

+bnβ−2
n α−1

n sinh[αn(x− xn)],

where

αn = βnε−0.5, βn = (f ′V n)0.5, bn = f ′xn, dn = fn − bnxn − f ′V nVn.
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We select γ
(n)
1 , γ

(n)
2 to satisfy conditions of continuity for V (x) :

Vn(xn) = V h
n , Vn(xn+1) = V h

n+1.

The condition V ∈ C1[0, 1] is valid, if

V ′
n−1(xn) = V ′

n(xn), n = 1, 2, ..., N − 1.

Using (4), we obtain the system of �nite-di�erence equations :

βn

sinh(αnhn+1)
V h

n+1 −
[

βn

sinh(αnhn+1)
+ βn−1 coth(αn−1hn)

]
V h

n +

+βn−1 coth(αn−1hn)V h
n−1 = Fn, V h

0 = A, V h
N = B, n = 1, 2, ..., N − 1, (5)

where
Fn =

fn−1

βn−1

tanh
αn−1hn

2
+

fn

βn

tanh
αnhn+1

2
+

+
bnhn+1

βn

[
1

αnhn+1

− 1

sinh(αnhn+1)

]
+

+
bn−1hn

βn−1

αn−1hn coth(αn−1hn)− 1

αn−1hn

.

The di�erence scheme (5) is a system of nonlinear algebraic equations. The
solution of this system is bounded, if some conditions on the function f are
assumed.

Lemma 1. Suppose that

f = f(u), f ′′(u)u ≥ 0. (6)

Then
‖V h‖ ≤ max{|A|, |B|, |f(0)|/β}. (7)

Proof. Rewrite scheme (5) in a form :

Lh
nV

h =
βn

sinh(αnhn+1)
V h

n+1 −
[

βn

sinh(αnhn+1)
+

+ βn−1 coth(αn−1hn) +
f ′(θn)

βn

tanh
αnhn+1

2

]
V h

n +
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+

[
βn−1 coth(αn−1hn)− f ′(κn)

βn−1

tanh
αn−1hn

2

]
V h

n−1 =
f(0)

βn−1

tanh
αn−1hn

2
+

+
f(0)

βn

tanh
αnhn+1

2
, V h

0 = A, V h
N = B, n = 1, 2, ..., N − 1,

where κn ∈ (0, V h
n−1). Using (6) we can prove that β2

n−1 ≥ f ′(κn). It follows
that maximum principle for operator Lh is valid [5], [10] : if

Lh
nΨh ≤ 0, Ψh

0 ≥ 0, Ψh
N ≥ 0, n = 1, 2, ..., N − 1 , (8)

then Ψh
n ≥ 0, n = 0, 1, ..., N. We de�ne Ψh = max{|A|, |B|, |f(0)|/β} ± V h.

For given Ψh inequalities (8) have a place , it follows Ψh ≥ 0. Lemma is
proved.

Lemma 2. Suppose that ‖V h‖ ≤ C, where V h is the solution of the scheme
(5). Then :

‖V ‖ ≤ C1, |V ′(x)| ≤ C2

[
1 + ε−0.5 (exp(−κx) + exp(κ(x− 1)))

]
, (9)

where κ = (β/ε)0.5, V is the solution of the problem (3).
Proof. Write the problem (3) in a form :

εV ′′ − a(x)V = g(x), V (o) = A, V (1) = B, (10)

where for x ∈ ∆n a(x) = β2
n, g(x) = fn + bn(x − xn) − β2

nV
h
n . Taking into

account that ‖V h‖ ≤ C we get |g(x)| ≤ C3. Using inequality
‖V ‖ ≤ |A|+ |B|+β−1‖g‖, we get ‖V ‖ ≤ C1. Using the condition |g(x)| ≤ C3

and famillar results [7],we get (9).Lemma is proved.
Let Ω be a nonuniform mesh of the interval I.We want a relatively high

density of points in a boundary layers. Let M be a number of mesh points
in the boundary layer. We take for n ≤ M

xn = −κ−1 ln[1− (1− κ−1)M−1n]. (11)

For n ≥ N −M

xn = 1 + κ−1 ln[1− (1− κ−1)M−1(N − n)]. (12)

We suppose, that the mesh Ω is uniform out of boundary layers, Q is a
number of uniform steps, Q = N − 2M.
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Theorem 1. Let Ω satis�es to conditions (11)-(12), V h is a bounded solution
of the scheme (5), [u]Ω is the solution of the problem (1) on mesh points. Then

‖V h − [u]Ω‖ ≤ C[Q−2 + M−2]. (13)

Proof. Let z = u− V. Then

εz′′ − [f(x, u)− f(x, V )](u− V )−1z = f(x, V )− f̃(x, V ).

For x ∈ ∆n |f(x, V ) − f̃(x, V )| ≤ C[h2
n+1 + |V (x) − V (xn)|2]. Using the

estimate (9) ,we get :

|V (x)− V (xn)| ≤
x∫

xn

|V ′(s)|ds ≤ C1hn+1+

+C2{exp[−κxn]− exp[−κxn+1] + exp[κ(xn+1 − 1)]− exp[κ(xn − 1)]}.
For n < M we use (11) and get :

|V (x)− V (xn)| ≤ C3[hn+1 + M−1].

For n < M hn+1 < M−1. It follows

|V (x)− V (xn)| ≤ CM−1.

The case n > N −M may be considered in the same manner.
For M ≤ n ≤ N −M we get |V (x)− V (xn)| ≤ CQ−1. So, we get

|f(x, V )− f̃(x, V )| ≤ C[M−2 + Q−2].

Taking into account, that [V ]Ω = V h and ‖z‖ ≤ β−1‖f(x, V )− f̃(x, V )‖, we
get (13). Theorem is proved.

Consider the case of a linear problem :

Lu = εu′′ − c(x)u = f(x), u(0) = A, u(1) = B, (14)

where c(x) ≥ β > 0, ε > 0, f, c ∈ C2[0, 1].
We rewrite scheme (5) for the problem (14):

Lh
nV

h =
βn

sinh zn+1

V h
n+1 −

[
βn

sinh zn+1

+ βn−1 coth zn +
cn

βn

tanh
zn+1

2
+
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+
c′nhn+1

βn

(
1

zn+1

− 1

sinh zn+1

)]
V h

n +

[
βn−1 coth zn − cn−1

βn−1

tanh
zn

2
−

− c′n−1hn

βn−1

zn coth zn − 1

zn

]
V h

n−1 =
fn−1

βn−1

tanh
zn

2
+

fn

βn

tanh
zn+1

2
+

+
f ′(xn)hn+1

βn

[
1

zn+1

− 1

sinh zn+1

]
+

f ′n−1hn

βn−1

zn coth zn − 1

zn

, (15)

where

cn = c(xn), c′n = c′(xn), β2
n = cn, α2

n = β2
n/ε, zn = αn−1hn, fn = f(xn),

f ′n = f ′(xn).

Theorem 2. Let for any step hn

hn ≤ h, h2‖C ′′‖ ≤ β. (16)

Then the next estimate for the error of the scheme (15) is valid:

‖V h − [u]Ω‖ ≤ Ch2.

Proof. For the problem (14) the equation (3) has a form :

εV ′′ − c̃(x)V = f̃(x), V (0) = A, V (1) = B, (17)

where for x ∈ ∆n

c̃(x) = cn + c′n(x− xn), f̃(x) = fn + f ′n(x− xn).

Prove estimate ‖V ‖ ≤ C. Taking into account (16), we have :

c̃(x) = c(x)− c′′(θ)(x− xn)2/2 ≥ β/2.

It imply |V (x)| ≤ 2β−1‖f̃‖ + max{|A|, |B|}. So, ‖V (x)‖ ≤ C. Now we
estimate z = u− V. We have :

Lz = f(x)− f̃(x) + [c(x)− c̃(x)]V.

Hence, |Lz| ≤ Ch2. Taking into account, that ‖z‖ ≤ β−1‖Lz‖, we get
‖u− V ‖ ≤ Ch2. Using that [V ]Ω is an exact solution of scheme (15) , we

complete the proof of the theorem 2.
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Now we'll consider the results of the numerical experiments.
Write a boundary value problem in a case of linear equation [4]:

ε2u′′ − u = cos2 πx + 2(πε)2 cos(2πx), u(0) = 0, u(1) = 0. (18)

The solution of (18) has a form :

u(x) = [exp(−x/ε) + exp(−(1− x)/ε)] / [1 + exp(−1/ε)]− cos2(πx).

According to the theorem 2 the scheme (15) has a property of the second
order accuracy for any mesh. Let Ω be uniform mesh with the step h. We
present a norm of the error [u]Ω − V h depending on ε and h in the table 1.
The table 1 con�rms the theorem 2. In the table 2 is presented the norm
of the error for the usiall second order di�erence scheme. Numerical results
con�rm the advantage of the scheme (15).

Now we'll consider the case of nonlinear boundary-value problem :

εu′′ − u3 − u = f(x), u(0) = 1, u(1) = 1, (19)

where function f(x) corresponds to solution :

u(x) =
[
exp(−ε−0.5x) + exp(ε−0.5(x− 1))

]
/

[
1 + exp(−ε−0.5)

]
+ sin(πx).

The di�erence scheme (5) is a system of nonlinear algebraic equations. We
use modi�ed Pikar method to �nd its solution [11] :

β(k)
n

sinh(α
(k)
n hn+1)

V
(k+1)
n+1 −

[
β(k)

n

sinh(α
(k)
n hn+1)

+ β
(k)
n−1 coth(α

(k)
n−1hn)

]
V (k+1)

n +

+β
(k)
n−1 coth(α

(k)
n−1hn)V

(k+1)
n−1 −GV (k+1)

n = F (k)
n −GV (k)

n ,

V
(k+1)
0 = A, V

(k+1)
N = B, n = 1, 2, ..., N − 1, (20)

As initial iteration for solution we chose V (0)
n = 1 for any n . The numerical

experiments indicated the convergence of iterative method for G > 1. For
calculations we chose G = 5. We break iterative process if maximal error
between solutions of neighbouring iterations not more 10−5. On every iterative
step we used Gaussian elimination method [5].

Table 3 contains a norm of the error for scheme (5) in the case of problem
(19) depending on ε and M, where � - number of mesh steps in each
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boundary layer. A number of uniform steps out of baundary layers is the
same as in layers (Q = M). In the layers mesh points were chosen according
to (11),(12). The results given in Table 3 support estimate (13).

Table 4 contains a norm of the error for scheme (5) in the case of the
uniform mesh. This calculations indicate that in the case of nonlinear problem
and scheme (5) there is necessity to concentrate mesh points in the boundary
layers.

Table 1.
ε h

0.1 0.05 0.01 0.005
1.0 5.9E-2 1.5E-2 6.2E-4 1.5E-4
0.1 3.2E-2 8.2E-3 3.3E-4 8.3E-5
0.01 4.0E-2 9.2E-3 3.3E-4 8.2E-5
0.005 4.3E-2 1.0E-2 3.3E-4 8.3E-5

Table 2.
ε h

0.1 0.05 0.01 0.005
1.0 3.1E-2 7.6E-3 3.0E-4 7.5E-5
0.1 1.2E-2 3.2E-3 1.3E-4 3.3E-5
0.01 9.7E-3 3.0E-2 1.4E-2 3.7E-3
0.005 2.5E-3 9.8E-3 3.6E-2 1.4E-2

Table 3.
ε M

3 10 30 100
0.1 0.16E-1 0.17E-2 0.36E-2 0.60E-3

0.1E-1 0.49E-1 0.42E-2 0.29E-2 0.48E-3
0.1E-2 0.18 0.12E-1 0.33E-2 0.56E-3
0.1E-3 0.29 0.19E-1 0.35E-2 0.60E-3
0.1E-4 0.32 0.23E-1 0.36E-2 0.61E-3
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Table 4.
ε h

0.1 0.02 0.01
0.1 0.11E-1 0.33E-3 0.12E-3
0.01 0.71E-1 0.13E-2 0.24E-3
0.001 0.91 0.24E-1 0.38E-2
0.0001 3.3 0.38 0.81E-1
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