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Some physical processes, as flame spreading or pollution transfer lead to
elliptic problems for unlimited domains. There is a problem to transfer the
boundary conditions to the boundary of the limited domain. In this work we
consider the case of half - limited interval. We use approach [1],[2] to extract
stable set of solutions, corresponding to condition at the infinity. We suggest
an asimptotic method to form the boundary conditions.

Define for any continuous or mesh function p(z) ||p|| = max |p(x)|.
Throughout the paper let C' and C; denote positive constants, that are always
independent of € and h.

Consider the problem:

Tou = —eu” +mu' + g(u) =0, (1)
u(0) = A, lim u(z) = B. (2)

We suppose, that ¢”(s) is continuous function,
ee€ (0,1, m>0, g(B)=0, ¢'(s) >a>0, s€R. (3)

Problem (1)-(2) simulates the flame spreading, when u— the tempera-
ture, m— flame speed, € — diffusion coefficient, function g(u) corresponds to
Arrenius law:

9(u) = K(u— B)exp(—E/u).

Get the estimate of stability for operator 7.
Lemma 1. Let p(x), q(x) - any enough smooth functions, bounded at the
infinity. Then for all x € [0, 00)

p(x) = q(2)] < o™ Tep — Teg]| + [p(0) — ¢(0)] + Lim. [p(s) — q(s)].

Proof. Let z = p — q. Define linear operator:

Loz=—e"+mz +bz=T.p—T.q, b=[g(p) — g(q)][p — "

Let
U(z) = a | Tep — Teg| + [2(0)] + lim |2(s)] £ 2().



Then
LV (x) >0, 0<zx<oo, ¥(0)>0, lim ¥(x)>0.

r—00

Using maximum principle we get ¥(x) > 0. Lemma is proved.
Taking p = u, ¢ = 0, we have from lemma 1:

u(z)] < B71g(0)| + |A| + | BI.

Lemma 2. Function u(x) increases, if A < B and decreases, if A > B.
Proof. Let A < B, z=u — B. Define linear operator:

Le¢p = —e¢" +md’ +[g(2 + B) — g(B)|z"'¢. (4)
If
6(0) < 0. Jim 6(r) =0, Leo(x) = 0
, then ¢(z) < 0. Using ¢(z) = z(x), we get u(x) < B. Using the relation:

[e.e]

w(x) = " [lg(u(s)) - g(B))explme"(z - 5)]ds,

T

we get u'(x) > 0 for any x. The case A > B is the same. Lemma is proved.
Lemma 3. For any x

|u(z) — B| < |A — B|exp[roz],

where 1¢ is the negative root of equation: —er? 4+ mr +a = 0.

We can proof lemma 3, using maximum principle for operator L..

Transfer the boundary condition from the infinity to some point Ly. The
point (B, 0) is a special point of the type ”sadle” in the space of the variables
(u, u’). We use approach [1],[2] and define the stable separatrice of the "sadle”
by relation:

u'(x) = ri(u(z) — B) + y(u(x)), (5)

71 is the negative root of the equation —er? +mr + ¢'(B) = 0,

v(u) is solution of the problem:

ey (w)[ri(u — B) +v(u)] = eray(u) + g(u) — g'(B)(u — B),
Y(B) =0, ri+ry=me " (6)
Lemma 4. For all x:

[y(u(z))| < C exp{2roz}. (7)



Proof. Taking into account (5),(6), we get:

SCZCV(U(SC)) — raey(u(x)) = g(u(x)) — ¢'(B)(u(z) — B).

It follows:

o0

Yu(x) = - /[Q(U(S)) — 9'(B)(u(s) — B)] exp[ra(z — s)]ds.

T

hence,
[7(u(@))] < max |gy (u(@))|(2r2e) " (u(z) — B)*.
Using Lemma 3, we get (7).
Using the equation (5) we form the problem for any finite interval :

—eu" +mu' + g(u) =0,

u(0) = A, u'(Lo) = rifu(Lo) — B] + y(u(Ly)). (8)

We can find y(u) from the equation (6) with some mistake. Investigate the
influence of that mistake on the solution of problem (8).

heorem 1. Let @ is solution of problem (8) in the case of function ¥(v).
Let 4'(v) is continuous function, 1 +7'(v) <0, v € R. Let

7 (u(Lo)) = Y(u(Lo))| < A,
where u(x) is solution of the problem (1)-(2). Then for every x € [0, Lo]
u(e) — (e)| < 28em~" explm(2e)(z — Lo)]. o)

Proof. Let z = u — @. Then

L.z =—e2"+m2 + [g(u) — g(@)](u—a) "2 =0,

2(0) =0, D.z = 2'(Lg) + 72(Lo) = v(u(Lo)) — ¥(u(Lo)),

where 7 = —r; — /() for some 6.
Define
U(z) = 2Aem ™ texp[m(2e) " (z — Lo)] £ 2z(x).

Then
LW(z) >0, v € (0,Lo), ¥(0) >0, ¥ (Lo)— (1 +7(0))¥(Lo) > 0.

Using maximum principle we get W(xz) > 0, x € [0, Lg]. The theorem is
proved.



Let @'(Lg) = 0. Then

u(z) — ()| < Ceexp[m(22) ™ (z — Lo) + roLol, 0 <z < Lo.
Let w(Lo) = B. In this case

lu(x) — i(x)] < Cexplm(2e) ™ (z — Lo) + 10Lo], 0 < 2 < L.

We use asymptotic approach to solve problem (6). We consider two terms
of asymptotic series:

() = 0(u) + ema(u). (10)

Taking into account (10) in (6), we have:

o(t) = g'(B)(u—B) - 9(“)7

m
9(B)
m2

mn(u) = — {70(u) + g(u)yo(u)}- (11)

Lemma 5. Let ¢"(s) is continuous function, u(x) is solution of problem

(1)-(2). Then for all x

[y(u(2)) = F(u(@))] < Ce. (12)
Proof. Let z(u(x)) = v(u(z)) — (u(x)). Then
€dci_z(u(x)) —erpz(u(z)) = F(z), lim z(u(z)) =0, (13)

where |F(z)| < Cye?. From (13) we have
z(u(z)) = —i/F(S) explre(z — s)]ds.

It follows that |z(u(x))| < Cym~'e%. Lemma is proved.
The problem (8) is restriction of the problem (1)-(2) to a finite interval.
We can prove, that for finite j for some C' and all x € [0, Lo

[ (@)] < C. (14)

So, the solution of the problem (8) has not boundary layer and some monotone
scheme may be used to solve the problem (8). As we noted, the problem (6)
can be solved with some mistake. Investigate the influence of that mistake
on the solution of a one sided difference scheme.



Let € is the uniform mesh of the interval [0, Ly]. Consider the scheme:

Thuh = —EAxct,nuh + anAx,nuh + g(u?L) = O’

n

up = A, Ryu" = Ay yu” + 0(uly) =0, (15)
where
h_ ok h oyl 4 b
gyt = S0, Ayt = S L ©(u) = (1= B) 5 ().

Investigate the properties of scheme (15).
Lemma 6. Let p, q¢" are any mesh functions . Then for every n:

Ik — " < a7 TMp" — T + |pl — |+

+(4e + 2ah)at | Ryp" — Ruq"| expla(2e + ah) (2, — Lo)]. (16)
Proof. Let 2" = p" — ¢". Then
Lt =T — Thg", 20 =l — ¢, Dp2" = Rup" — Rug", (17)
where L" — linear operator
Lhh = —eAmmzh + anAx’nzh + bp2", (18)

n

b = [f (s 20) — flan, 2a)]/ (0 — ar),
D;, — linear operator:

Dyz" = [0(py) — Oaw)]lpy — an] ™ 2l + Auvz".

Define mesh functions ¢", p":

h n—N h n+1—N
¢2_l1+(§] : pz_[l—i-a] .
13

Then
expla(2e) "Nz, — Lo)] < ¢! < expla(2e + ah) (2, — Lo)].

Lho" > o[8¢ 4+ 4ah|™ ¢, Dpo" > afde +2ah]™', Duo" > 0. (19)
Define U

U = o M| T — T"¢"|| + [pf — | + (4e + 2ah)a | Rup" — Rug|o" & 2"

Then
Up >0, DLN"O" >0, LM >0, n=1,2,..,N —1, (20)

bt



Using maximum principle we get U* > 0. Lemma is proved. From lemma 6
follows that scheme (15) has unique and bounded solution.

According to the next theorem the scheme (15) has the property of the
uniform convergence in €.

Theorem 2. For some C

I[ule — u"|| < Ch. (21)

We can prove that theorem, using (14) and maximum principle.
Lemma 7. Let ©'(v) is continuous function, ©'(V) > & > 0. Let a" is
solution of scheme (15) in the case of perturbed function ©. Then if

[©(u) — Ouy)| < A,
then for every n
lul — | < An~'(4e + 2ah) exp[a(2e + ah) (2, — Lo)]. (22)

Prove. Let z" = u" — 4. Then

h h h ~ 1,
Lhsh—0 sh—0 D h__ RN T AN-1 O(uy) — O(uy
2 =0, 25 =0, Dp2" = h —

) b = By -0 ),

L' (3.7) by = [f(uh,20) — f(@", x,)]/(ul — @"). Define *:

WP = An~(4e + 2ah) ol £ 2.

Using maximum principle we prove lemma.
Scheme (15) is a sistem of nonlinear equations. We use Picar method to
find solution:

j+1 j+1 +1 _ ] ]
—eBae W’ A et + Gup = Gy, = [, ),

w)™t = A, AT+ Gui = Guly — O(uly). (3.22)
Lemma 8. Let
of )
U

Then for every iteration j

=) < (1= )l = )l
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Proof. Define 2/ = w/ — u". Then
_SAxx,an+l + anAx,an+l + GZZ’;/+1 = [G - f;(snv [L’n)}ZZL,

B =0, Aon T+ GAT =[G - O'(r)] -
Define

n

T — (1 _ g) 129]] + 20+,

Then the conditions (20) are fulfilled and therefore ¥" > 0. Lemma is proved.
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