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Abstract

Parabolic problems on a half-infinite interval and in a half-strip are
considered. Method of lines is used to transform parabolic problems to
a boundary value problem for a system of ordinary differential equations
(ODE) on an half-infinite interval. Method of extraction of a set of solu-
tions, satisfying the limit conditions at the infinity, is used to transform a
problem on half-infinite interval to a problem for a finite interval. Asymp-
totic series are used to solve auxiliary Cauchy problems with conditions
at an infinity.

1 Introduction

We consider a parabolic problems on unbounded domains - on a half-infinite
interval and in a half-strip. For construction of a constructive for computer
computations difference scheme we have to transform a problems under consid-
eration to a problems for a bounded domains. Boundary value problems on un-
bounded domains were considered in works of A. Abramov and N. Konyukhova
[1], A. Zadorin and O. Harina [2], L. Vulkov and M. Koleva [3], G. Shishkin [4]
and in other works. We use approach of work [1], where was considered a system
of ODE with a limit condition at infinity. At first we use method of lines to
transform a parabolic problem to a problem for a system of second order ODE
on half-infinite interval. Then we construct a set of solutions of the system,
that satisfy the limit boundary condition at infinity. This set may be given by
first order system of ODE. Last system we use as a boundary condition for a
problem on bounded domain.

We understand, that C and Ci are positive constants, that don’t depend on
parameter ε.
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2 A system of ODE on half-infinite interval

Consider a boundary value problem in a matrix form:

ε2U′′(x)− P (x)U(x) = F(x), (1)

U(0) = A, lim
x→∞

U(x) = 0, (2)

where F(x), P (x) are smooth enough, P (x) is positive definite matrix of order
M,

P (x) ≥ αI, α > 0 ε > 0.

According to [2] next estimate

max
x
||U(x)|| ≤

√
1
α2

max
x

||F(x)||2 + ||A||2, x ≥ 0

is valid, where

||U|| =
{ n∑

k=1

U2
k

}1/2

.

We investigate method of reduction of a problem (1)-(2) to a problem for a
finite interval, using method of extraction of a set of all solutions, satisfying the
limit condition at infinity [1],[2].

Define first order system:

εW′(x) + G(x)W(x) = m(x), (3)

where matrix G(x) is solution of a singular Cauchy problem for the matrix
Riccati equation:

εG′(x)−G2(x) + P (x) = 0, lim
x→∞

G(x) =
√

P∞, (4)

vector-function m(x) is the solution of singular problem:

εm′(x)−G(x)m(x) = F(x), lim
x→∞

m(x) = 0. (5)

Problems (4), (5) are composed so, that every solution of equation (3) satisfies
to equation (1). According to [2] for any x ≥ 0

G(x) ≥ √
αI.

Using maximum principle we can prove inequality

max
x≥s

||m(x)|| ≤ 1√
α

max
x≥s

||F(x)||, s ≥ 0

and next lemma.

Lemma 1 The estimate

max
x
||W(x)|| ≤

√
1
α2

max
x
||m(x)||2 + ||W(0)||2.

is valid.
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Now we prove, that equation (3) extracts solutions of equation (1), satisfying
the limit condition at infinity.

Lemma 2 Let W(x) is solution of (3),

G(x) ≥ βI, β > 0, m(x) → 0, x →∞.

Then
W(x) → 0, x →∞.

Proof. Consider a problem:

εV′(x) + βV(x) = m(x), V(0) = A.

Integrating last equation, we have:

Vi(x) = Aie
−βε−1x +

1
ε

x∫

0

e−βε−1(s−x)mi(s)d s.

Taking into account, that mi(s) → 0, s →∞, we get:

Vi(x) → 0, x →∞.

So, V(x) → 0, x → ∞. If we denote Z(x) = V(x) − W(x), then Z(x) is a
solution of a problem:

εZ′(x) + βZ(x) = [G(x)− βI]W(x), Z(0) = 0.

Let w = (Z,Z). Multiplying last equation on Z(x), we get:

ε

2
w′ + βw = ((G− βI)W,V)− ((G− βI)W,W) ≤ ||(G− βI)W|| ||V||.

Let
Υ(x) = ||(G− βI)W(x)|| ||V(x)||.

Then we have an inequality:

ε

2
w′(x) + βw(x) ≤ Υ(x). (6)

Taking into account, that V(x) → 0, x →∞, we get:

Υ(x) → 0, x →∞.

Integrating (6) from 0 to x, we get:

w(x) ≤ 2
ε

x∫

0

Υ(s)e2βε−1(s−x) d s.

It follows, that w(x) → 0, x →∞, therefore Z(x) → 0, if x →∞. Lemma is
proved.

Conditions of Lemma 2 are fulfilled for β =
√

α, therefore, all solutions of
(3) tend to zero at infinity. We proved, that equation (3) extracts solutions
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of equation (1), satisfying the limit boundary condition (2) at infinity. Using
equation (3), reduce problem (1)-(2) to a problem for a finite interval:

ε2U′′(x)− P (x)U(x) = F(x), 0 < x < L,

U(0) = A, εU′(L) + G(L)U(L) = m(L). (7)

We can prove, that problems (1)-(2) and (7) have a same solution U(x) for
0 ≤ x ≤ L. We must solve a question, how to find G(L) and m(L) from singular
Cauchy problems (4), (5). We use asymptotic series on a small parameter ε :

Gj(x) =
j∑

k=0

Gk(x)εk, mj(x) =
j∑

k=0

mk(x)εk. (8)

Substituting expressions for Gj(x) and mj(x) into equations (4) and (5), re-
spectively, we get recurrence formulas:

G0(x)Gk(x) + Gk(x)G0(x) = G′k−1(x)−
k−1∑

i=1

Gi(x)Gk−i(x), k ≥ 1,

G0(x) =
√

P (x);

G0(x)mk(x) = m′
k−1(x)−

k∑

i=1

Gi(x)mk−i(x), k ≥ 1,

G0(x)m0(x) = −F (x).

Using that solutions of problems (4),(5) are stable to small perturbations of
P (x) and F (x), we get estimates of accuracy:

max
x
||Gj(x)−G(x)|| ≤ Cεj+1, max

x
||mj(x)−m(x)|| ≤ Cεj+1.

On the other hand, for large enough x ≥ L we can seek solutions of problems
(4), (5) in a form:

Gj(x) =
j∑

k=0

Gk

xk
, mj(x) =

j∑

k=0

mk

xk
.

And in this case we can get recurrence formulas on Gk, mk and estimates of
accuracy:

||Gj(x)−G(x)|| ≤ CL−(j+1), ||mj(x)−m(x)|| ≤ CL−(j+1), x ≥ L.

Using asymptotic series, we can find G(L) and m(L) with given accuracy. Ac-
cording to the next theorem, solution of a problem (7) is stable to perturbations
of G(L) and m(L). It follows, that if we solve problems (4), (5) with some errors,
it does not increase errors in solution of problem (7).

Theorem 1 Let Ũ(x) be solution of a problem (7) in the case of G̃(L), m̃(L).
Let

||G(L)− G̃(L)|| ≤ ∆, ||m(L)− m̃(L)|| ≤ ∆.

Then
max

x
||U(x)− Ũ(x)|| ≤ C∆exp

[√
α(2ε)−1(x− L)

]
.
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3 Parabolic equation on infinite interval

Consider a problem:

−∂u

∂t
+ ε2 ∂2u

∂x2
− b(x, t)u = f(x, t), (9)

u(0, t) = φ1(t), u(x, 0) = φ2(x), lim
x→+∞

u(x, t) = 0. (10)

Let solution u(x, t) is enough smooth function,

ε > 0, b(x, t) ≥ γ > 0, lim
x→+∞

φ2(x) = 0, lim
x→+∞

f(x, t) = 0, 0 ≤ t ≤ T.

We use method of lines on variable t and transform (9)-(10) to a problem
for a second order system of ODE:

−ui(x)− ui−1(x)
τ

+ ε2 d2 ui

d x2
− b(x)ui = f(x, ti)

u0(x) = φ2(x), ui(0) = φ1(ti), lim
x→+∞

ui(x) = 0,

where ti = τi, i = 1, 2, . . . , M, tM = T.
Taking into account, that derivative |u′′tt(x, t)| is uniformly bounded, we can

estimate the error of approximation:

max
i,x

|u(x, ti)− ui(x)| ≤ Cτ.

Problem (9)-(10) for parabolic equation is transformed to the system of type
(1)-(2) with the matrix

P (x) =




b(x, t1) + 1
τ 0 . . . 0

− 1
τ b(x, t2) + 1

τ . . . 0
. . .

0 . . . − 1
τ b(x, tM ) + 1

τ


 .

Since matrix P (x) is of low triangle form, we can write problem (7) for every i
in scalar form:

−ui(x)− ui−1(x)
τ

+ ε2 d2 ui

d x2
− b(x)ui = f(x, ti), u0(x) = φ2(x), 1 ≤ i ≤ M,

ui(0) = φ1(ti), ε
d

d x
ui(L) + Gi,iu

i(L) = mi(L)−
i−1∑

j=1

Gi,j(L)uj(L). (11)

Note, that in case of parabolic problem we can write explicit formulas for a
calculation of G(L) and m(L). Consider a case, when we construct G(x), using
asymptotic series (8). On each iteration for Gk we have to solve matrix equation
of a form:

AX + XB = F. (12)

Matrices A, B,X, F are of low triangle form and for every diagonal with elements
Xi,i−p, (p = 0, 1, 2, . . . , i− 1) we can find:

Xi,i−p =


Fi,i−p −

i−1∑

k=i−p

Ai,kXk,i−p −
i∑

k=i+1−p

Xi,kBk,i−p


 /

[
Ai,i + Bi−p,i−p

]
.
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If P is low triangle matrix, we can use explicit formula to solve matrix equation
X2 = P, that we have to solve to get initial iteration G0(x):

Xi,i−p =


Pi,i−p −

i−1∑

k=i+1−p

Xi,kXk,i−p


 [Xi,i + Xi−p,i−p]

−1
,

p = 1, 2, . . . , i− 1, xi,i =
√

Pi,i, 1 ≤ i ≤ M.

4 Parabolic equation in a strip

Consider a problem:

−∂u

∂t
+ ε2 ∂2u

∂x2
+ ε2 ∂2u

∂y2
− b(x, y)u = f(x, y, t), (13)

u(x, 0, t) = φ1(x, t), u(x, 1, t) = φ2(x, t), u(x, y, 0) = φ3(x, y),

u(0, y, t) = φ4(y, t), lim
x→+∞

u(x, y, t) = 0 (14)

for a half-strip D = {0 ≤ x < ∞, 0 ≤ y ≤ 1} and 0 ≤ t ≤ 1. Suppose, that
ε > 0, b(x, y) ≥ b0 > 0,

lim
x→∞

φi(x, t) = 0, i = 1, 2, lim
x→∞

f(x, y, t) = 0, lim
x→∞

b(x, y) = b+(y).

Solution of problem (13)-(14) has boundary layers at the boundaries x = 0,
y = 0,y = 1. Introduce uniform mesh Ωt on t with a step τ and nonuniform
mesh Ωy on y with steps hj . Using approximation of derivatives on t and y, we
get a system of differential-difference equations:

−V i
j − V i−1

j

τ
+ ε2 d2

dx2
V i

j + ε2Λyy,jV
i − b(x, yj)V i

j = f(x, yj , ti),

0 < j < N, 0 < i ≤ M, V i
j (0) = φ4(yj , ti), lim

x→+∞
V i

j (x) = 0,

V i
0 (x) = φ1(x, ti), V i

N (x) = φ2(x, ti), V 0
j (x) = φ3(x, yj), (15)

where

Λyy,jV
i = 2

hj(V i
j+1 − V i

j )− hj+1(V i
j − V i

j−1)
hjhj+1(hj + hj+1)

.

To take into account boundary layers on y, we shall use nonuniform mesh from
[5] or [6]. In case of mesh [5] we have estimate of accuracy

max
i,j,x

|U i
j(x)− V i

j (x)| ≤ C

N2
+ Cτ,

where U(x) = [u(x, y, t)]Ωy×Ωt . For every i problem(15) can be written in the
form (1)-(2) with a matrix

P (x) =




p1 + 2ε2

h1h2
− 2ε2

h1(h1+h2)
. . . 0

− 2ε2

h2(h2+h3)
p2 + 2ε2

h2h3
− 2ε2

h3(h2+h3)
. . .

. . .

0 . . . . . . pM + 2ε2

hM−1hM


 ,
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where pi = b(x, yi) + τ−1. Matrix P (x) is diagonal dominated M-matrix. It is
known, that in this case

√
P (x) is diagonal dominated M-matrix too. Iterative

method to resolve matrix equation X2 = P, when P is diagonal dominated
matrix, is discussed in [2]. Using asymptotic series for G(x), we can prove, that
for enough large x or for enough small ε matrix G(x) is diagonal dominated
matrix. In case of three-diagonal matrix P (x) we have not explicit formulas for
calculation of G(x) and m(x). Numerical methods for matrix equation (12) are
investigated in [7].

5 Summary

We proposed numerical method for parabolic problems in unbounded domains.
Preliminary we considered a system of second order ODE on half-infinite inter-
val. To reduce this problem to a problem for a finite interval, we investigated
A. Abramov approach and got some new estimates. For parabolic equation
on half-infinite interval we applied method of lines to reduce a problem under
consideration to a system of ODE, then we used investigated approach and got
some explicit formulas to compose a boundary value problem on a finite interval.
Then we used the same approach for a parabolic problem in a strip.
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