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1 Introduction

Blasius problem on a half-infinite interval is considered. This problem has a place under mathe-
matical modelling of viscid flow before thin plate. Blasius problem is a boundary value problem
for a nonlinear third order ordinary differential equation on a half-infinite interval.

This problem was investigated in many articles. For example, G.I. Shishkin [1] studied
asymptotic behavior of differential and difference solutions to get difference scheme with a finite
number on nodes for enough long interval. We apply the method of marking of set of solutions,
that satisfy the limit boundary condition at infinity to transform a problem under consideration
to a problem for a finite interval [2]. To use that method we have problems, connected with
nonlinearity of differential equation and with unbounded coefficient before second derivative. We
offer to do transformation of independent variable to avoid a problem, connected with boundless
of that coefficient.

We consider a Blasius problem as model nonlinear problem for application of developing
technic.

2 Case of a linear problem

Consider a problem:
εu′′(x) + [a(x) + x]u′(x) = f(x), (1)

u(0) = A, lim
x→∞u(x) = 0. (2)

Suppose,that a(x) + x ≥ 0, ε > 0, functions a(x), f(x) are smooth enough,

∃ lim
x→∞ a(x) = a0, lim

x→∞ f(x) = 0.
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Note, that domain is unbounded and solution u(x) can be unbounded for a bounded function
f(x). Integrating equation (1), we get, that if a(x) + x ≥ α > 0, then

|u(x)| ≤ |A|+ 1
α

x∫

0

|f(s)| ds.

To avoid unboundedness of coefficient before first derivative, introduce new variable t = x2

2 .
Then problem (1)-(2) become a form:

εu′′(t) + b(t)u′(t) = F (t),

u(0) = A, lim
t→∞u(t) = 0, (3)

where

b(t) =
a(
√

2t)√
2t

+ 1 +
1
2t

, F (t) = f(
√

2t)/(2t).

So, coefficient b(t) is bounded for t, separated from zero. We can do some other replacement of
x to do function b(t) uniformly bounded, but it is not important for method, considered below.

By the next equation we mark solutions of differential equation (3), that satisfy the limit
boundary condition at infinity [2, 3, 6]:

εu′(t) + g(t)u(t) = β(t), (4)

where g(t) is solution of singular Cauchy problem for Riccati equation:

εg′(t) + b(t)g(t)− g2(t) = 0, lim
t→∞ g(t) = 1, (5)

β(t) is solution of singular problem:

εβ′(t) + [b(t)− g(t)]β(t) = εF (t), lim
t→∞β(t) = 0. (6)

Thank to condition lim
t→∞ g(t) = 1 every solution of equation (4) tends to zero at infinity and

equation (4) picks that solutions of differential equation (3), that satisfy the limit boundary
condition at infinity.

Lemma 1 Let 0 < b1 ≤ b(t) ≤ b2. Then b1 ≤ g(t) ≤ b2.

Proof. At first prove, that g(t) > 0, 0 ≤ t < ∞. Define

v(t) = exp



−

t∫

0

ε−1g(s)ds



 .

Obviously, v(t) is solution of a problem:

εv′′ + b(t)v′(t) = 0,

v(0) = 1, lim
t→∞ v(t) = 0, (7)
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It follows from (7), that
v(t) > 0, v′(t) < 0, 0 < t < ∞.

Taking into account that g(t) = −εv′(t)/v(t), we get g(t) > 0, 0 ≤ t < ∞.
Prove, that g(t) ≤ b2. Consider a problem:

εg′2 + b2g2 − g2
2 = 0, lim

t→∞ g2(t) = b2

with solution g2(t) = b2. Let z = g2 − g. Then z(t) is solution of a problem:

εz′(t)− [g2 − b(t) + g(t)]z(t) = (b(t)− g2)g2 ≤ 0, lim
t→∞ z(t) = b2 − b∞ ≥ 0. (8)

If we suppose, that for some s z(s) < 0, then we shall have contradiction. It follows, that
g(t) ≤ b2. In the same manner we can prove, that g(t) ≥ b1. Lemma is proved.

Using a problem (6), we can prove, that

||β||∞ ≤ ||g||∞
∞∫

0

|F (s)| ds.

Using equation (4), transform a problem (3) to a problem for a finite interval:

εu′′(t) + b(t)u′(t) = f(t), 0 < t < L,

u(0) = A, εu′(L) + g(L)u(L) = β(L). (8)

Prove, that problems (3) and (8) have a same solution for 0 ≤ t ≤ L. Consider initial value
problem:

εu′(t) + g(t)u(t) = β(L), u(0) = A. (9)

Taking into account equations (5),(6), we prove, that solution of a problem (9) satisfies to
problems (3) and (8). Problems under consideration have unique solution, therefor problems (3)
and (8) have a same solution for 0 ≤ t ≤ L.

So, problem (3) is exactly reduced to a problem (8), formulated for a finite interval. We have
only to find coefficients g(L) and β(L).

Functions g(t), β(t) as solutions of problems (5),(6) we can sick as asymptotic series:

g(t) ≈
N∑

n=0

εngn(t), β(t) ≈
N∑

n=0

εnβn(t), (10)

or in a form:

g(t) ≈
N∑

n=0

(2t)−n/2gn, β(t) ≈
N∑

n=0

(2t)−n/2βn. (11)

In case of representation (11) we suppose, that

a(
√

2t) =
N∑

n=0

(2t)−n/2an + O
(
(2t)−(N+1)/2

)
,

f(
√

2t) =
N∑

n=0

(2t)−n/2fn + O
(
(2t)−(N+1)/2

)
.
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In both cases (10) and (11) we got recurrent formulas on βn, gn. In particular, in case of repre-
sentation (11) we have:

g0 = 1, g1 = a0, g2 = 1 + a1, g3 = −εa0 + 4a0 + a2 + 4a0a1,

β0 = 0, β1 = −f1, β2 = −f2 − β1ε
−1(g3 − a2).

Make inverse transformation of independent variable and get a next problem for a finite
interval:

εu′′(x) + [a(x) + x]u′(x) = f(x), 0 < x < L0,

u(0) = A,
ε

L0
u′(L0) + g(L)u(L0) = β(L0). (12)

Using maximum principle, we can prove next lemma.

Lemma 2 Let ũ(t) is solution of problem (12) with perturbed coefficients g̃(L0), β̃(L0),

|g(L0)− g̃(L0)|, |β(L0)− β̃(L0)| ≤ ∆, g̃(L0) ≥ σ > 0.

Then
|u(x)− ũ(x)| ≤ σ−1∆(|u(L0)|+ 1).

Consider a problem for numerical experiments:

u′′(x) +
[

2x

x + 1
+ x

]
u′(x) = 0,

u(0) = 1, lim
x→∞u(x) = 0.

We compare different approaches for formulation of boundary condition at a finite point instead
the limit boundary condition at infinity. Let ∆ = max

n
|vh

n − ṽh
n|, where ṽh

n is solution of the

scheme of upwind differences for enough long interval [0, L0], L0 = 100; vh
n is solution of the

same difference scheme on a shot interval depending on boundary condition. In Table 1 error ∆
is represented for different approaches and intervals.

Table 1: Absolute errors for a linear problem

L wn(L) = 0 g̃n(L)
g0 g0 + g1/L g0 + g1/L + g2/L2

2 0.12e− 01 0.95e− 02 0.11e− 02 0.44e-04
3 0.35e− 03 0.20e− 03 0.19e− 04 0.41e-05
5 0.36e− 07 0.13e− 07 0.95e− 09 0.84e-10
7 0.32e− 12 0.86e− 13 0.49e− 14 0.23e-15
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3 Blasius problem

Consider Blasius problem:
u′′′(x) + u(x)u′′(x) = 0,

u(0) = 0, u′(0) = 0, lim
x→∞u′(x) = 1. (13)

Let
u(x) = v(x) + x, w(x) = v′(x).

Then problem (13) can be written in a form:

v′(x) = w(x), v(0) = 0,

w′′(x) + [v(x) + x]w′(x) = 0,

w(0) = −1, lim
x→∞w(x) = 0. (14)

Consider iterative method for a problem (14):

v′n(x) = wn(x), vn(0) = 0,

w′′n(x) + [vn−1(x) + x]w′n(x) = 0, 0 < x < ∞,

wn(0) = −1, lim
x→∞wn(x) = 0. (15)

Lemma 3 Let
v0(x) ≥ v(x), v0(x) ≥ v1(x), x > 0.

Then iterative method (15) converges.

Proof. Prove, that for every value of x sequences vn(x), wn(x) are monotone decreasing
and have low bounds.
Low bounds. Let zn(x) = vn(x)− v(x), pn(x) = wn(x)− w(x). Compose a problem:

z′n(x) = pn(x), zn(0) = 0,

p′′n(x) + [vn−1(x) + x]p′n(x) = −zn−1(x)w′(x), 0 < x < ∞,

pn(0) = 0, lim
x→∞ pn(x) = 0.

By induction prove, that for all x > 0 zn(x) ≥ 0, pn(x) ≥ 0. According to conditions of lemma
z0(x) ≥ 0. Let zn−1(x) ≥ 0. Prove, that pn(x) ≥ 0. Suppose, that for some s pn(s) < 0.
Then there is point of negative minimum of function pn(x), it leads us to contradiction. So,
pn(x) ≥ 0. It follows, that zn(x) ≥ 0. According to method of mathematical induction for all n
zn(x) ≥ 0, pn(x) ≥ 0. It implies, that vn(x) ≥ v(x), wn(x) ≥ w(x).

Monotony. Prove, that sequences vn(x), wn(x) are monotone decreasing.
Let zn(x) = vn(x)− vn+1(x), pn(x) = wn(x)− wn+1(x). Then zn(x) pn(x) are solutions of

a problem:
z′n(x) = pn(x), zn(0) = 0,

p′′n(x) + [vn−1(x) + x]p′n(x) = −zn−1(x)w′n+1(x), 0 < x < ∞,

pn(0) = 0, lim
x→∞ pn(x) = 0.
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Using method of induction, prove, that zn(x) ≥ 0, pn(x) ≥ 0. According to conditions of lemma
z0(x) ≥ 0. . It is follows from equation on pn(x), that if zn−1(x) ≥ 0, then pn(x) ≥ 0 for x > 0.
Condition pn(x) ≥ 0 implies, that zn(x) ≥ 0. So, using method of mathematical induction, we
proved, that for every n zn(x) ≥ 0, pn(x) ≥ 0.

We proved, that for every x > 0 sequences vn(x), wn(x) are monotone decreasing and have
low bounds. It’s known, that in this case sequences under consideration have the property of
convergence. Lemma is proved.

Consider a case v0(x) = 0. Prove, that conditions of a lemma 3 are fulfilled. First condition
has a place, because v(x) ≤ 0. Verify the condition v0(x) ≥ v1(x), x > 0. It follows from (15),
that w1(x) ≤ 0 for x > 0. It implies, that v1(x) ≤ 0 = v0(x). So, conditions of lemma 3 are valid.

Consider a question of reduction Blasius problem to a finite interval. For every fixed n
problem (15) is linear and we can use results, obtained in linear case. Second equation in (15)
corresponds to (1) with a(x) = vn−1(x).

Transformed to a finite interval problem (15) has a form:

v′n(x) = wn(x), vn(0) = 0,

w′′n(x) + [vn−1(x) + x]w′n(x) = 0, 0 < x < L,

wn(0) = −1,
1
L

w′n(L) + gn(L)wn(L) = 0. (16)

Coefficient gn(L) can be calculated on base of asymptotic series (11) as it was discussed for
linear case.

Consider results of numerical experiments. Write difference scheme for a problem (16):

vk
n = vk−1

n +
wk−1

n + wk
n

2
h, v0

n = 0,

wk+1
n − 2wk

n + wk−1
n

h2
+ [vk

n−1 + xk]
wk+1

n − wk
n

h
= 0,

w0
n = −1,

1
L

wK
n − wK−1

n

h
+ g̃n(L)wK

n = 0,

k = 1, 2, . . . , K − 1. (17)

Compare errors, corresponding to different approaches for formulation of boundary condition
instead of limit boundary condition at infinity. Let

∆ = max
n
|vh

n − ṽh
n|,

where ṽh
n is solution of problem (17) for enough long interval [0, L0], L0 À L, when error of

limit boundary condition transfer to point L0 is inessential. Let L0 = 100, h = 0.1 We continue
iterations, if max

k
|vk

n − vk
n−1| > δ, δ = 10−13. Initial iteration is defined as v0(x) = 0. In Table 2

error ∆ is presented for different L and g̃n(L) in compare with condition wn(L) = 0. In this
Table g0 = 1, g1 = vn(L). We have similar results in case h = 0.01.

Table 2: Absolute errors for Blasius problem
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L wn(L) = 0 g̃n(L) = g0 g̃n(L) = g0 + g1/L

3 0.83e− 1 0.24e− 1 0.19e− 1
5 0.76e− 3 0.15e− 3 0.47e− 4
7 0.34e− 6 0.53e− 7 0.97e− 8
9 0.12e− 10 0.15e− 11 0.18e− 12

It follows from numerical experiments, that using special boundary condition, based on
equation (4), we get more accurate results in compare with classical approach.

Author thanks N.B. Konyukhova for useful proposals, that were took into account.
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